
III
ONR Grant No. N00014-91-J-1011

AD-A253 680 R&T Project: 4148501---02

Semi-Annual Report

1 DEVELOPMENT OF PARALLEL ARCHITECTURES
FOR SENSOR ARRAY PROCESSING ALGORITHMS

I ...... D T ICSELECT fIl
Submittedto: JUL311992

Department of the Navy LI
Office of the Chief of the Naval Research

Arlington, VA 22217-5000

I
Submitted by:.

M. M. Jamali Principal Investigator

S. C. Kwatra Co-InvestigatorU

Ih~ docoiment has been approved
for public release and sole; its

distzibufion is unlimited-I

Department of Electrical Engineering
College of Engineering

The University of ToledoIToledo, Ohio 43606

Report No. DSPH-2

July 1992

5 92-19258



U

I ABSTRACT

I The high resolution direction-of-arrival (DOA) estimation has been an
important area of research for number of years. Many researchers have3 developed number of algorithms in this area. Fast advancement in the areas

of Very Large Scale Integration (VLSI), Computer Aided Design (CAD) and

Application Specific Integrated Circuit (ASIC) design, has made possible the

development of dedicated hardware for sensor array processing algorithms.

In this research we have first focussed our research for the development of

parallel architecture for Multiple Signal Classification (MUSIC) and
Estimation of Signal Parameter via Rotational Invariance Technique
(ESPRIT) algorithms for the narrow band sources. The second part of this
research is to perform DOA estimation for the wideband sources using two3 algorithms. All these algorithms have been substituted with computationally

efficient modules and converted them to pipelined and parallel algorithms.

*Parallel Architectures for the computation of these algorithms and

architectures has been developed. Simulations of these algorithms and

5architectures has been performed and more detailed simulations are in

progress.

I Chapter 1 presents theoretical and mathematical aspect of MUSIC/

ESPRIT algorithms. These algorithms are modified and parallelized for

U narrow band case in chapter 2. Hardware implementations of these
algorithms are in Chapter 3. Development of Generalized Processor - GP is3 shown in Chapter 4. In Chapter 5 DOA estimation for Broad-Band sources
using "Broad-Band Signal Subspace Spatial-Spectral" (BASS-ALE) Estimation

algorithm and its architecture is described. Chapter 6 gives the details of

hardware development for the bilinear transformation approach for wide

band sources. Data generation and simulation of DOA estimation both for

narrow band and wideband cases are given in Chapter 7. Conclusions and

future directions are described in Chapter 8. Accesion For
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Chapter 1

INTRODUCTION TO ARRAY SIGNAL PROCESSING

1.1 INTRODUCTION

The high resolution direction-of-arrival (DOA) estimation is important in

many sensor systems. It is based on the processing of the received signal and

extracting the desired parameters of the DOA of plane waves. Many approaches

have been used for the purpose of implementing the function required for the DOA

estimation including the so called maximum likelihood (ML) and the maximum

entropy (ME) methods [1-3]. Although they are widely used, they have met with

only moderate success. The ML method yields to a set of highly non linear

equations, while the ME introduces bias and sensibility parameters estimates due to

use of an incorrect mode (e.g. AR rather than ARMA). The Multiple Signal

Classification (MUSIC) and the Estimation of Signal Parameters by Rotational

Invariance techniques (ESPRIT) algorithms are two novel approaches used recently

to provide asymptotically unbiased and efficient estimates of the DOA [4,5]. They are

believed to be the most promising and leading candidates for further study and

hardware implementation for real time applications. They estimate the so called

signal subspace from the array measurements. The parameters of interest (i.e.

determiaing of the DOA) are then estimated from the intersection between the array

manifold and the estimated subspace.

An important aspect of the design of a signal processing system for the DOA

is the computation of the spectral decomposition. In recent years, the search for

useful algorithms and their associated architecture using special purpose processors
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has been a challenging task. Such high performance processors are often required to

be used in real time application; thus, it is felt that they should rely on efficient 3
implementation of the algorithms by exploiting pipelining and parallel processing g
to achieve a high throughput rate. The QR algorithm is one of the most promising

for the spectral decomposition problem due to its stability, convergence rate 3
properties, and suitability for VLSI implementation [61. I

A number of investigations have been concerned with finding efficient

algorithms to solve the spectral decomposition problem based on the QR algorithm.

These investigations have mostly relied on systolic arrays approach. A primary 3
reason for employing such approach is that it is believed to offer a well-motivated

methodology for handling the high computation rate required for a real time I
application. 3

A useful property of the QR transformations is that shifts can be used to 3
increase the rate of convergence to locate the eigenvalues [71. This may be very

useful for some systems applications where the computations of the eigenvalues I
are sufficient, such as matrix rank determination and system identification.

However, in other applications, (e.g. , direction of arrival estimation, spectral

estimation, and antenna beamformation), the computation of both the eigenvectors 5
and eigenvalues is crucial [4-8], and one might use the QR algorithm without shifts

to obtain these parameters in parallel. In such a case, this algorithm may require a

sufficiently large number of iterations to converge. Keeping the number of

iterations low may yield to inferior results such as in MUSIC and ESPRIT

algorithms, where an accurate computation of the eigenvalues and eigenvectors 3
will also determine the accuracy of the direction of arrival (DOA's) . For example,

2
23!



for the MUSIC algorithm [8], once we determine the signal and noise subspaces from

the eignenvectors, the spacial spectra is determined by

I
S(O) = H H (1.1)

a (E)EN EN a(E)

where EN is the matrix of eigenvectors spanning the noise subspace, and

a(0) = [1, exp(-j0), exp( -2je), ... , exp( -jE(m-1 )] (1.2)

with m being the number of sensors, and H denoting complex conjugate transpose.

Also , one drawback of the QR algorithm is that when applied to a dense

matrix, it may be very time-consuming and may pose difficulties for parallel

implementation due to communication and timing among different modules of the

systolic array [ 9 1. For this reason, currently, there is no known simple efficient

systolic array approach using the QR algorithm that is capable of generating the

eigenvectors and eingenvalues in parallel.

1.2 DATA MODEL

For the purpose of understanding the advantages of using a sensor array in

DOA estimation, it is necessary to explore the nature of signals and noise the array is

desired to receive. It is well known that in active sensing situations, the scattered

data fluctuates randomly about a true value representing a noise free signal. This is

due to noise effects and errors in a sensor array system. These fluctuations can be

both additive and multiplicative. The additive fluctuations are due to thermal

noise, shot noise, atmospheric noise, and other kinds of noise which are

independent of the desired signal. The multiplicative fluctuations are due to

measured errors in estimating the signal amplitudes, gain variation, etc. A noise

3



model that represents all these noise effects is, in general, difficult to obtain,

especially when some of the noise sources are dominant. Usually, based on the n

noise models, additive and/or multiplicative, the calculated probability of error, as a

function of the noise power, is practically similar in each case. This indicates that

the noise power, rather than its specific characteristics, has more impact on the

sensor array performance. Moreover, one is usually concerned with the effects of

the additive noise on the output of a sensor array system. For this reason, an I
additive noise would be appropriate to choose for the evaluation of the performance

of a system. This noise represents the totality of small independent sources, and by

virtue of the central limit theorem one can model the resulting noise as Gaussian 3
and (usually) stationary process. Also, to make the problem analytically tractable,

first narrow band signals are considered where it is assumed that the power of all 3
emitter signals is concentrated in the same narrow frequency band. In this context, N

two more assumptions that are of interest are invoked. First, it is assumed that the

sources are in the far field of the array, consequently the radiation impinging on the 1
array is in the form of plane waves, and secondly, the transmission medium is

assumed to be isot.ropic so that the radiation propagates in straight line. Basd on 5
these assumptions, the output of any array element can be represented by a time

advanced version or time delayed version of the received signal at a reference

element as shown in Figure 1.1. 3
Since the narrow-band signals are assumed to have the same known frequency co,

the received signals at the reference sensor and the second sensor are respectively 3
given by

s(t) = u(t) exp[ j(wot + v(t))] (1.3) 3
s(t-t) = u(t- 0 exp[ j(o0o (t - T)+ v(t- T)M (1.4)

I

.=,a m R nnnnmn nno n4 3N~l
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where u(t), and v(t) are the amplitude and phase of s(t) respectively. The signal

Is(t- -0 at the second sensor is delayed by the time required for the plane wave to

propagate through A sin 0, and if c represents the velocity of propagation, then this

Itime delay T is given by

I
~A Sn0

Plane wave

Second 
Reference element

sensorI element A

IFigure 1.1: A two sensor array

I
A sin 0(15- cin (1.5)

C

I
The narrow band assumption implies that u(t) and v(t) are slowly varying

functions, thus:

u(t) = u(t-) (1.6)I
v(t) = v(t-T) (1.7)

I
I
I5
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for all possible propagation delays. Thus the effect of a time delay on the received

signal is simply a phase shift: I

s(t-T)= s(t)exp(-jooT) (1.8) I

3
Now consider an array consisting of m sensors and receiving signals from d sources

located at directions 01 02, 0.. 0 d with respect to the line of array, as shown in Figure 1
1.2.

Sensors

I
I

Reference element !

Figure 1.2: Typical array scene. 3
It is assumed that none of the signals are coherent. Using superposition of

signal contribution, the received signal at the kth sensor can be written as

d

Xk(t) ak(0) S i(t-Tk(0 ) ) + nk(t) 3
i=l

I
63I



d

= ak(0 ) S i(t) exp(-jco o (0 ) ) + n k(t) (1.9)
1=1

where I k(0 i) is the propagation delay between a reference point and the kth sensor

for the ith, wavefront impinging on the array from direction 0i, a k(O i) is the

corresponding sensor element complex response (gain and phase) at frequency

co , and nk(t) stands for the additive noise at the kth sensor. If we let

a( 0 i) = { a 1(0 i)exp(jo 0 oT I(Oi )) .... a m(0 i)exp(jw oT m(O i))}H (1.10)

Where H denotes complex conjugate transpose

and n(t) = I n I(t), n 2(t .............. n m(t)}T

the data model representing the outputs of m sensors becomes
d

x(t)=1a( 0 i)s i(t) +n(t) (1.11)

Now by setting

A(O) :=( a(0 1), a( 0 2), ... ,a( 0 d)  (1.12)

and

s(t):- s M ~), S 2(t), ... , IS d(t)) T  (1.13)

x(t) can be rewritten as

x(t) A(0) s(t) + n(t) (1.14)

where

7



MIC dJ mxd 1
x(t), n(t) e C , S(t) C and A(O) E C ( C: complex plane) U
A(O) is called the direction matrix. The columns of A(O) are elements of a set, 3

termed the array manifold, composed of all array response vectors obtained as

ranges over the entire space. If signals and noise are assumed to be stationary, zero 1
mean, uncorrelated random processes and further the noises in different sensors are

uncorrelated, the spatial correlation matrix of the observed signal vector x(t) is

defined by:
R =(x(t) x (t)) (1.15)

where 6 is the expectation operator. I
The substitution of Equation (1.14) into (1.15) gives 3

R xx = E (A(O) s(t) s(t)H(A(O))H+ 2 .I 

=A(0) R ss A(O)H + Y21  (1.16)

where t
R s 6(s(t)s(t)H) (1.17)

and 02. I is the spatial correlation matrix of the noise vector n(t), (Y2 denotes the

variance of the elemental noise ni (t), i = 1, ... n. 3
I

1.3 MULTIPLE SIGNAL CLASSIFICATION (MUSIC) ALGORITHM 3
Consider first the noise free case where U

I
83



d
x(t) = a( 0 i) s i(t) (1.18)

i=l

This means that x(t) is a linear combination of the d steering column vectors of A(0)

and is therefore constrained to the d-dimensional subspace of Cm,, termed the signal

subspace, that is spanned by the d columns vectors of A(0). In this case the signal

subspace intersects the array manifold at the d steering vectors a( 0 j) as shown in

Figure 1.3.

Signal Subspace

/ f Array Manifold

Figure 1.3: Signal subspace and array manifold for a two-source example.

I However, when the data is corrupted by noise, the signal subspace has to be

estimated and consequently it is expected that the signal subspace will not intersect

the array manifold, so the steering vectors closest to the signal subspace will be

chosen instead [6]. In the following, it is shown that one set of d independent

vectors that span the signal subspace is given by the d eigenvectors corresponding to

Ithe d largest eigenvalues of the data covariance matrix. The data covariance matrix

I 9



I
is assumed to be positive definite and Hermetian and consequently its

eigendecomposition is given by 3
R x× = E A E (E E =1)

: R E=EA I
= (A(0)RssA(0) + 2.I)E= EA

A(0)R s5 A(e)H E =EA -2.E 5
H H H 2 HE A(0)R ssA() E = E E A - 2.E E

=A -a 2

A(0)RssA(O) = E( A 2.1)EH (1.19)

Thus the eigenvalues of A(0) R SS A(0)H are the d largest eigenvalues of R xx

augmented by a2 . Also the (m-d) smallest eigenvalues are all equal to a2 . Now if 3
(x i, e i) is an eigenpair of R (x, then

Rxxe i = x" i e i (1.20)

and for any i > d, I
(A(@) R ss A(0)H + a 2. I)ei= o e i

= A()RssA(M)H ei = 0 (1.21)

Now from the fact that A(O) and R,, must have at least one nonsingular 3
sub matrix of order d and without loss of generality, suppose that this submatrix

consists of the first d rows of A 1(0) R,,. Partition A I(O)Rss as: I

A(O)Rss= (A1(0)R 5s,A 2(0)Rss )T  (1.22)

10 3



The substitution of (1.22) into (1.21) yields

A 1(0) Rss A(O) e =O (1.23)

and
H

A 2(0) R ss A(0) e i = 0 (1.24)

For the equation (1.23) to be satisfied,

H
A(0) e i=O i >d (1.25)

Thus e 1, e 2, ... e d span the same subspace as spanned by the column vectors of

A(0). In most situations, the covariance matrices are not known exactly but need to

be estimated. Therefore, one can expect that there is no intersection between the

array manifold and the signal subspace. However, elements of the array manifold

closest to the signal subspace should be considered as potential solution. After

determining the number of sources [71, Smith [51 proposed the following function as

one possible measure of closeness of an element of the array manifold to the signal

subspace

1
PH() = aH(0) EnE n a(0)  (1.26)

where En = [ ed+l , ed+2 .... em]

The dominant d peaks over 0 e [- xt, x] are the desired estimates of the directions of

arrival.

p 11
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For the particular case where the array consists of m sensors uniformly

spaced, and if the reference point is taken at the first element of the array, Prn(O ) is I
obtained by first calculating the DFT of the vectors spanning the null space of

A(O) R ss A(O)H or

E n = [ ed+l, ed+2. ,eml (1.27) 3
If A is the distance separating two sensors of the array, an element of the array 5
manifold is given by I

a(0) = (, , exp ( j2 tA sine / X), ... , exp ( j2 nt(m-1)A sin / X))T (1.28) I
and the DFT of the vector e i. i > d is given by

M
F.= a* ()e = e ki exp( -2 n(k-)A sin/ X) (1.29)

k=1 I
thus

P m()=- m 
(1.30)

1
i=d+l[F2!

Summary of the MUSIC algorithm 3
1) Estimate the data covariance matrix R.

2) Perform the eigendecomposition of R. 3
3) Estimate the number of sources.

4) Evaluate P m(0 ). I

5) Find the d largest peaks of P m(O ) to obtain estimates of the parameters

I
i II ! 12 i3



Although MUSIC is a high resolution algorithm, it has several drawbacks

including the fact that complete knowledge of the array manifold is required, and

that is computationaly very expensive as it requires a lot of computations to find the

intersection between the array manifold and the signal subspace. In the next section,

,Another algorithm known as ESPRIT will be discussed. Even though it is similar to

the MUSIC and exploits the underlying data model but it eliminates the

requirement of a time-consuming parameter search.

1.4 ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL

INVARIANCE (ESPRIT)

Consider a planar array composed of m pairs of pair identical sensors (doublets) as

shown in the Figure 1.4. The displacement between two sensors in each doublet is

constant, but the sensor characteristics are unknown (5]. The signal received at the

i th doublet can be expressed as

d

X k(t)= a k(e d s i(t)+ n k(t)
i=1

d

y k(t)= a k(( j) exp( j 0 Aoa sin 0 i/c) s i(t) + n yk(t) (1.31)

where 0 i is the direction of arrival of the ith source relative to the direction of

translational displacement vector. Employing vector notation as in the case of

MUSIC, the data vector can be expressed as:

x(t) = A() s(t) + n X(t)

y(t)= A() s(t) + n Y( t) (1.32)

where

13



jO OA sin 01  jo 0Asin ed

cD=diag( exp( ). exp( c

arriving signals3

sensorsI

Figure 1.4: Sensor array for ESPRIT.

Now, consider the matricesI

Cxx Rxx ... 21

= A(6) R Ss A*(O) (1.33)I

a d R =y A(O) R Ss (*A*(O) (1.34)I

In the computation of R xthe noise in different sensors is assumed to be 3
uncorrelated (6E[n X(t) n Y(t0I = 0).

14 3



The eigenvalues of the matrix pencil (C ,, R xy) are obtained by solving

CX- yR =0 (1.35a)

or

A(O) R SS ( I- y (D*)A*(O) = 0 (1.36b)

Now from the fact that A() and R S. are full rank matrices, Equation (1.35b) reduces

to

I-Y(Dl* = 0 (1.36)

and the desired singular values are

jo oA sin 0 k

y k= exp( c ) k=l,...,d (1.37)

Thus the direction of arrival can be obtained without involving a search

technique as in the MUSIC case, and in that respect computation and storage costs

are reduced considerably. Also it can be concluded that the generalized eigenvalue

matrix associated with the matrix pencil (C ),, R xy) is given by:

c0
A= 0 0 (1.38)

However, due to error in estimating R , and R xy from a finite data sample as

well as round-off errors introduced during the squaring of the data, the relation

15



between A and (D given above is not exactly satisfied, which make this method

suboptimal. 3

The following procedure is proposed to estimate the generalized eigenvalues [71 1
1) Find the data covariance matrix of the complete 2m sensors, denoted by R

2) Estimate the number of sources d.

3) Estimate the noise variance (average of the 2m - d noise eigenvalues). 1
4) Compute Rz -a 2 I, then A(O) R sA*(O) and A(O) R s*A*(O) are then the top

left and top right blocks.

5) Calculate the generalized eigenvalues of the matrix pencil (Cx,, Rxy) and 3
choose the d ones that lie close to the unit circle. I

U
1.5 TOTAL LEAST SQUARE (TLS) ESPRIT 3

The last method is based on having a very good estimate of the noise m

variance, a condition difficult to satisfy in most real cases. This may yield overall

inferior results. To circumvent this difficulty to some extent, the total-least-square

(TLS ESPRIT) scheme is used instead. 3
Let

z(t)= x(t) As(t) + n (t) (1.39)

where I
- A nx,(t)

-A = A(D' nz(t)=nY(t) (1.40) m

16 3



and let E s= [ e1 , e 2,... ed I be the (2m x d) matrix composed of the eigenvectors

corresponding to the d largest eigenvalues of (R z,, I). Since the columns of E and A

span the same subspace, then there must exist a non-signular F matrix of

dimension d, such that

Es= A F (1.41)

Now define two m x d matrices E X and E y by partitioning E s as

Ex Ar
E s-=  = (1.42)E AcW

Since E X and E y share a common space (i.e. the columns of both E x and E y are a

linear combination of the columns of A), then the rank of E Xy = [Ex I E y is d which

implies that there exist a unique 2d x d matrix F of rank d such that

0=[EXI Ey] F=EXF X +Ey Fy

=A FF +AorF (1.43)

(F span the null-space of [E x I E y).

In the above equation [E x I E y is an m x 2d matrix, it can be seen as

consisting of m vectors in a 2d dimensional space, and the set of all vectors which

transform into the zero vector (i.e. which satisfy [E x I E y1 x = 0) is called the null

space of A, and it has a dimension, 2d-rank [E,, I E y], or d. Now if

T F FX[ F y11  (1.44)

17



then

A r ,r1 = A) (1.45) I

i. A is assumed to be a full rank matrix, then

F r-F = (D (1.46) 3
Thus the eigenvalues of I correspond to the diagonal element of (D.

Summary of the TLS ESPRIT

1) Obtain an estimate of the data covariance matrix R zz, denoted by R =. 3
2) Perform the eigendecomposition of R z as R - = E A E

3) Estimate the number of sources d.

4) Obtain E e= [e 1 , e 2... ed ]and decompose it to 3

obtain I
E3

5) Compute the eigendecomposition of ExE xy= E H [EX I E y] =EAE

and partition E into four d x d submatrices I

Ell E12  3
E=

E21 E22

6) Calculate the eigenvalues of I = - E 12[ E 22
"1]

7) Estimate 0 k = I (D k)3

18



I =Sin {c arg( ) I (o0 A)}
i

I
1.6 IMPROVED TLS ESPRITI

By considering the eigendecomposition of the data matrix R of rank d,

following equation can be written.

Rzze i = Xi e i = cF'e i i=d+l, ..., 2m (1.47)I
Using the same procedure as in the MUSIC algorithm

A G=0 (1.48)I
i whereI G= [ e dl, e d,2, ..... e2m

I
Now from the fact that A and G can be partitioned asI

A4DGA A and G= (1.49)

I
Hence

(AAH, HA H) =0 (1.50)

I or

* 19



A HGx + HA HG= iHy0

AH GX -DH AH
A G× =- " A Gy I

H H

GA =-GHA (1.51) 3
By multiplying both sides of the above equation by T defined in Equation(1.41).

H H

GXAT = -G H AD T (1.51a) 3
or

H EX = - H E (1.51b)

Because E and E y span the same subspace, then the objective in the previous TLS 3
algorithm is to find a matrix i e Cdxd such that

E, W = Ey. (1.52)

The substitution of (1.52) into (1.51b) yields 3
GxE X = -GH EXV (1.53)

I
Thus if there exist W which transforms E into E y , this transformation must also

HHH HI
transform - G HE into G HE× ( Note that- G E ×and G HE span the same subspace

as spanned by the columns of Ex or E y). I

In practical situations, where only a finite number of noisy measurements are

available, Equations (1.51) and (1 53) can not be satisfied exactly. A criterion for

obtaining a suitable estimate of W must be formulated. The TLS is a method of

fitting that is appropriate in this case because E x , E Y, GH yE x,and GHx E, ×are all 3
noisy measurements.
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To find a common transformation which satisfies both (1.51) and (1.53), define

E G EE
H I GHE and H 2= GHE (1.54)

thus y is given by

H 1i = H 2  (1.55)

The previous TLS algorithm applied to the model E xj = E ycan be viewed as

using m observations ( the number of rows of Ex or E y). By using Equation (1.55), it

is easily verified that the number of observations is increased from m to 3m- d .

Thus a better estimate of W, is believed to be achieved, and the algorithm of the

improved TLS will be the same as for the TLS with the exception of replacing E xy by

EH 1H 2.

However the same solution for T1 can be achieved by considering instead the

d matrices

H HHh
H1 1 1h 2

Ki= hHH h ih (1.56)
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where h 2i is the ith column of the matrix H 2" If X d+l is the smallest eigenvalue of

K , then I
Kie d+1 =d+1 ed+1 (1.57) 3

Now by transforming e d+1 into X , X i solves the TLS problem and gives the i'-1 1
column of TP [8]. I
This transformation is very useful for parallel processing as it avoids the

computation of Fy given in (1.44) to find T. However this method has a

disadvantage as the eigendecomposition of d matrices must be performed at the 3
same time.

1.7 CONCLUSIONS 5
A theorital background for MUSIC and ESPRIT algorithmn for DOA

estimation has been presented. An improved ESPRIT algorithm is also given which 3
improves estimation of DOA's. As seen above for both MUSIC and ESPRIT

algorithm the number of sensors is equal are dependent on the number of source I
whose direction of arrival has to be estimated. It is considered that the number of 3
source never exceed seven, and hence number of sensors is always considered to be

eight from next chapter onwards. 3

I
I
I
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Chapter 2

EIGENDECOMPSITION USING HOUSEHOLDER'S TRANSFORMATION

1AND GIVEN'S ROTATION

1.1 SYMMETRICAL EIGEN DECOMPOSITION PROBLEM

IIt is well known that the symmetric eigendecomposition problem is one of

the fundamental problems in signal processing as it arises in many applications

I such as DOA's estimation and spectral estimation. Most methods reduce the

Iproblem to the generalized eigendecomposition problem by computing the data

covariance matrix. Householder's method is a technique used for reducing the

I bandwidth of the data covariance matrix by transforming it to a tridiagonal one

under congruent transformations without affecting the values of the eigenvalues

[9]. In fact, if (x,K) is an eigenpair of the covariance data matrix Rx,, and if N is an

I orthogonal matrix it can be shown that ( NH x, X) is an eigenpair of NHRx N.

I In order to transform the m x m data covariance matrix Rxx to a tridiagonal

matrix, T, , m-2 Householder' s transformations (Ni, i=1,2 .... m-2) are determined

i such that NH RxxN = T, where

I N = N N 2... N m-2

Each transformation is determined to eliminate a whole row and column above

Iand below the subdiagonals without disturbing any previously zeroed rows and

i columns. The basic iteration sequence of operation for this transformation method

can be stated as

R1 = Rxx (2.1)

U, = I (2.2)
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begin

For k=1,2,...,m-2, 3
Rk+1 = N H R k N k (2.3)

Uk+1 = N, H k (2.4)

end I
T = RM.1  (2.5)

U= Um-1  (2.6)

T is a tridiagonal matrix and U is an orthogonal matrix of eigenvectors [ ul, I
U2 .... ,Um ] which can be related to the matrix of eigenvectors X of the original 3
problem by 3

X= 1" Nk U (2.7)

k=1 3
where i

0 Nk

L 0 Nk rn-k

k m-k

(2.8) iI
and

I
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I2wW H
N k I HI~ ww
where w is a vector chosen such that the matrix Nk is orthogonal. The

method is best illustrated by carrying out the first reduction. For k=1, the

transformation can be written as

R 2 =NHR 1 N1

1where
1

1 rn-

I

ITherefore
R= K ; rj 0 j

I Fr i.: L I

I r N

I
I25
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N-X r X- -

Nr RI N ' I ]
M-1I -

od for term -N to be null except for the first element, 'w.

Iorder frthe first t rm N

should have the following form I
w = r + e 1

where e = (1, 0, 0, 0...)T

and r I = (r 21,r 31  • ...... rn)T I

is a complex number that is to be determined such that 3
H { 2wwH}

N) H r I

2wwj 

2(r 1 + 3 el) (r, + 1* el) r,

=rl" H eT I
2 (r(r+ +13e1 )rr1(r3eT

( +I Pel) (r, + P5 el1)I
For this equation to be satisfied, we should have3

H T H ~T
2 (r1 + P*e 1 ) r1  (r, s-13ej)(r 1 + Pe 1)

or

H *T H T H2 ri ri + 2 Pel r,= r, r, + *el r, + 0r H e2 +

26



I One solution is given by

rH r *(29

and

elr,3,e (2.10)

I multiplying both sides of (2.10) by .

(3)2e Tr1  r H3 1re (2.11)

Substitution of (2.9) in (2.11) yields

H Hr I r I r el

el r1

Let

IH 2=2

r1 r1  r, =1

1 and from the fact that
1I 0

1rI e1 4r 21 r .1  r *1  r*2

I 0
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U

r 21 1
r 31

e ri = 1 0 ..... 0 =r 21

I
r ml.r MI

we get

( )2 2 r 21
1 -

r 21

(r 21~

r 21.r 21

(r* 2

21

~I

or r 21

r 21

By choosing 1 given by the previous equation, the first column of R 2 has the

form (r1 .1,-, 0, 0 , ...0)T, and because of the Hermetian property,the first row 3
becomes (r 01,, 0,...0). 3
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In the following a method is given for a recursive application of this result to

calculate the elements of R 2, R 3,...., R m-2  For instance

R, NHR 1 N 1

I = w [I2H]R[ 2wwH]

= [R1 RI I--- ]

H H

2 wwH 2 wwH ww Rww

ww ww wwww

where w=r 1 +e 1 ,
H

w w

By defining c - 2 ,and d = Rjw

I Equation (2.12) can be rewritten as follows:
d H  dwH W (WH d) wHwH dwH w dw

R2 = R 1 - c c + 2

w dH d wH w (w H d) w w (wH d) w

R 1  c - + 2  + 2
2 c c 22c
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I

d w (w aH d)) H WdwH

c# .. w- {w H7J2=1 c 2C 2 c 2. c

I
Let

Ltd w (w H d)

c 2c2

then

dH dHwH I
H

c 2.c 3
Now from the fact that

dH Hd
d Hw = w Hd

v can be rewritten as

dH (wH d)H 
3

H
c 2.c 2

and Equation (2.12) reduces to I
R 2 = R 1 - wv - vw (2.13)

I
The choice of above equation is primarily motivated by the interest in the

application of parallel processing in computing the elements of the matrix R2; that

is, all the columns of R 2 can be computed in parallel as:

R 2i =RIj-vj w - wjv (2.14)

I
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j=1,2 ........ 8
i th coum .th

where R 2J and R are thej column of R 2 and R  and v j and w* are the j

Icomponents of v and w respectively.

IGiven the tridiagonal matrix T and defining U =NH which is obtained from

Householders transformation, the QR algorithm may be used to compute

I eigenvalues and eigenvectors. This is achieved by producing a sequence of

Itransformations based on orthogonal matrices and illustrated by the following

algorithm.I
T =T
U1 U=NH

Ibegin
Ifor k=1, n

Rk =QHTk

Tk+I = RkQk

Ik+I QKU k

end

I =T n+1

After k iterations T will be approximately a diagonal matrix I whose diagonal

elements approximate the eigenvalues of the original matrix, and the appropriate
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eigenvectors are given by the columns of the matrix X . The orthogonal matrices

Qk in the QR algorithm are the product of m-1 rotations Ql(k,i) ; in the

(i,i+l) planes respectively. Each rotation QH(k,i ) is defined as a matrix which is an

identity matrix except for the entries (i,i), (i,i+l), (i+l,i), and (i+l, i+1) which I
together form a 2 x 2 matrix given by

Q(k,i) (2.15)-Sc

The factorization producing R k and Q k from the original matrix T is 3
explained as follows. Each subdiagonal element can be eliminated by a plane 3
rotation, the first one is

H 1 exp(-jO) til
Q(O,) R1  -exp(jO) 1 ( 1t 21

The (2,1) entry in this product should be equal to zero, thus

-ti exp (jO) + t21 = 0 (2.17)

or 3
exp (jO) = t21/ tl1 = r exp(jO)

where r= I t21/ ti I, and 0.= arg(t221 - arg (ti1)

To have a unitary matrix, the matrix Q (1,i) is chosen as

I
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I r exp(-j)

r

-r exp(jo) 1 (2.18)

- l+r 2 +r 2

I

For a Hermetian tridiagonal matrix, we have

.. tI I t~(2.19)

1+r2 22
1+ r t2 +It I2

Ii 21

and

r exp(jo) 21 (2.20)

I+ r 2 2

-- and the above matrix reduces to

t t3 11 21

/2 2 I 2 + 12

t1 + t I1 t2 + It 1I-- t11 t21 11 t21

- 21(2.21)

21 11

1 21 11 21

In comparing the various methods for solving the eigendecomposition

problem, there are numerous factors that one must consider . Perhaps, the primary

factor is that of the relative efficiency of the method under consideration. One
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criterion commonly used in the eigendecomposition problem for determining the

efficiency of a particular method is the time required to solve this problem, and

hence one might rely on special purpose hardware and exploit pipelining and

parallel processing to achieve high throughput rates. We now turn to the question I
of what efficient algorithm is to be used to perform the eigendecomposition of a

tridiagonal matrix. Phillips and Robertson presented an algorithm for tridiagonal

QR[151 which has been modified and incorporated in this work. 3
Let the entries of the diagonal and subdiagonal elements of the tridiagonal I

matrix T, shown below be a(m,k) and b(m,k) respectively where m is row or column

number and k is iteration number, and let c(i,k) and s(i,k) be the entries of the
rotations used in rotating rows i and i+1 at the (k+l)th iteration.

a(l,k) b(2,k) m
b(2,k) a(2,k) b(3,k)

b(3,k) a(3,k)

I
I
I

The updated matrix T k+I can be expressed as I
H QH H T(2.22)

T k H -=  H QHk k (k,,) ... Q(k,m-l) I
Using the associative property of matrix products, the multiplication of Tk by

I
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Ok, -2 H QH from the left results in a matrix R whosei-2 Q  k, 1-3)"' ( k, 1)

subdiagonal entries up to b(i-i,i) are forced to zero, that is

x(2,k)
x(3,k)

T= x(4,k)
b(i,k) a(i,k) b(i+lk)

b(i+l,k) a(i+l,k)I
-(2.23)

and T can be rewritten ask+l Qkm Qk(~
TH H H R
k+l= Q()k, Q(k,m-2) Q~k,i-1)RkQ(k,1)k,2)"Q9k,m-1)

I Now after a little thought, it can be shown that the multiplication of Rk by

9 k, i)QI , _) and Q( k, i- )Qk, 0 from the left and right respectively results in

the updated entries b(i,i+l) and a(i,k+l). That is these two entries can be obtained by
considering the product Q H Q R' Qk, QI However these twoconidein thpodut ( k, i) Q( k, i-1) k (,i-1 Qk, i

I rotations affect only rows (i-1), i, and (i+1) and finding a(i,k+l) and b(i,k+l) reduces

Ito the simple matrix multiplication of 3 x 3 matrices such that if we define

x(i,k) =xl, c(i, k) = cl, c(i-1, k) = cO, s(i, k)= sl s(i-1, k) = sO,

Ia(i, k) = al, a(i+i, k) = a2, b(i, k) = bl, b(i+i, k) = b2, a(i, k+1) = a3,

I b(i, k+1) = b3, a(i,k+l) and b(i,k+l) can be calulated as

1 0 0i (o so) iFX co -so* 01 10 01

Sa3 o cl sl* -sO cO 0 bl al b2* sO cO 0 0cl -sl*
0 -sl cl 0 0 1. 0 b2 a2 0 0 1- Osl cl -

II
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[10 iFco so* coF xi()(. [ C O~ * -so* si*]
0 ci si * f-so co 0 bi al. b2* Hso Cod -cOsi

0 -si ci 0 0 1-~ 0 b2 a2 o si ci

][ 0 cOxl+sObi* (.2*][o cl -so* s1*

0-s ib i ci s* 0 -s~b1 * +cOa I c~ * s o -Cosi I

By solving the above matrix for the value of b3 , we get

W3 0 (, ci(s~bi* + cOal) + s1* b2, cOcib2* +a2si) [ool
orI

b(i, k+i) =s(i-1, k)[ c(i, k)[c(i-i, k)a(i, k)-s(i-1, k)b* (i, k) I + s (i,k)b(i+i, k) (2.24)

Let

w = c(i, k)[-s(i-I, k) b* (i, k) + c(i-I, k) a(i, k)] + s(i, k) bk'i+l, k)I

Substituting w in (2.24), we get

b(i, k+1) = s(i-1, k) . w

Similarly for a3, we have 
-io

a3 = 0, cl(-s~bl* + cOai) + si* b2*, cOclb2* +a2si* )codl]

or

a(i, k+1) = c(i-i, k)c(i, k){c(i, k)(c(i-i, k)a(i, k)-s(i-i, k)b* (G, k)I]ss* (0, k) (2.25)
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I b(i+1, k)) +s(i, k)[c(i-1, k)c(i, k)b* (i+1, k)+s* (i, k)a(i+1, k)

I Let
v = c(i-1, k) c(i, k) b* 6i+1, k) + s* (i, k) a(i+1, k)

I Substituting w and v in equation ( 2.25) yields

i ~i +1 =ci-,k)c~,k).w si k.Similarly the values of s(i, k) and c(i, k) can be calculated using the following

I general relation.
c(i, k) = x(i+1, k)r

I s(i, k) = b(i+1, k)r

where x(i+1, k) is the updated a(i, k) after (i-I)t rotation and is given by

x(i+1, k) = -s(i-1, k)b(i, k) + c(i-1, k)a(i, k)

I and
r = sqrt( I b(i, k) 1I + x(i+1, k)2

Thus, if we denote the diagonal and subdiagonal elements entries of the

I matrix T=T1 as a(i,0) and b(i,0) respectively, and the entries of the matrix U as

u~ij,O), a psedocode to update the Hermetian tridiagonal matrix and the matrix of

eigenvectors is given as follows:

x(1, k)=0; b(1, k)=0; a(0, k)=0; b(m+1, k)=0; c(0, k)=1; s(0, k) =0;

c(m+1, k)=1; s(m+1, k)=0;

k =0

repeat

for i=1,m

x(i+1, k)= - s(i-1, k) -b (i, k)+ c(i-1, k) . a(i, k)

r=sqrtf I b(i, k) 1 +x(i+, k)2
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if r>O

c(i, k) = x(i+1, k)/r

s((i, k) = b(i+l, k)/r
else I

c(i, k) 1

s(i, k) = 0

end if

w=c(i, k). x(i+l, k)+s* (i, k). b(i+l, k)

v=c(i-1, k) . c(i, k) . b* (i+1, k) + s* (i, k) a(i+1, k)

b(i, k+l)=s(i-1, k). w 3
a(i, k+l)=c(i-1, k). c(i, k). w + s(i, k). v

for j=l,m

u(i, j, k+1) = c(i, k) . u(i, j, k)+s* (i, k). u(i+1, j, k)

u(i+l, j, k+1) = -s(i, k) . u(i, j, k)+c(i, k). u(i1, j, k) I
end for 3

end for

k =k +1

until sum of squares of b = 0

2.2 NON SYMMETRICAL SINGULAR VALUE DECOMPOSITION I

Although, the generalized eigendecomposition is well defined for square 3
matrices and has proven to be applicable to a variety of cases, it has a principal

drawback of accuracy when applied to the data covariance matrix. The computation U
of the data covariance matrix involves implicit squaring of the data which may 3
deteriorate numerical stability and accuracy of the eigenvectors and eigenvalues

because of the ill-conditioned character of the matrix [111 . Under this condition, a 3
38 3



I
I

more fruitful approach to mitigate this problem to some extent is to operate directly

I on the observed data using the singular value decomposition (SVD).

I Let X E C mx N denote the data covariance matrix . The objective is to obtain

I a set of vectors spanning its columns space, that best approximate X in the least-

square sense. Assume without loss of generality that N>m, then the singular value

I decomposition of
|~ x/ -N is

X /-N= u 1v (2.26)

In the above equation U and V are mxm and NxN unitary matrices

respectively, and I = [7-,01 , where 11 is an mxm diagonal matrix with no-

I negative entries and 0 denotes an mx(N-m) matrix whose entries are zeros. It can be

easily shown that the eigendecomposition and the SVD yield the same subspace

I estimate. In fact the data covariance matrix may be expressed as

R XH X X V H  TyH

= 7 N = U Y- TV H (2.27)

=u T H= U 10 I]uH H (2.28)

101

I Thus the left singular vectors of X are the eigenvectors of RXXo and the eigenvalues

I of Rx are the diagonal elements of 71 . To obtain U and 7-, a first step would be

to reduce X to square lower bidiagonal matrix Y. This can be done by performing a

3 preprocessing using Householder's transformations .The transformations from the

i left and right are determined to eliminate a whole column and row below and

I 39



U
I

above the subdiagonals without disturbing any previously zeroed rows or columns

as in the case of the tridiagonal matrix. The basic iterative sequence of operations n

can be shown in the following example, where X is assumed to be a 4 X 6 matrix

X x x x x x]

L> x x x x x

Foooo ol I= x (,1) = x x x x xx J

X x x F 000001
==> fl,1 XN2=  x x x x x

X (,1= XX X X XX

xx00 0 0

==>N( 1,1)XN( 2 ,1)N( 2 ,2)= x x x x
-0 x x O 0001x

xxxx On

x000 I
xx0 0 xxx

==>N(I 2)N( 1 1 ) XN(2, 1 ) N(2,2)= 0 x x x X X

x O 0 1 00

x 0 00 00

N(,2)(1,1) XN( 2 1)N (2,2) N(2,3)= 0 xX 0 0 0

L0xxxx 4

I
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x 0 000
==>N( 1,2) N(11) XN( 21 ) N(2,2) N( 2,3) N(2,)= x x 0 0

L0 x x00-
N H NH

Let N1 = N( 1,2) N(11) and N2 =N( 2 ,1 ) N(2,2) N( 2,3) N(2,4)

HH

then NH XN 2 = [ Y, 0 (2.29)

Where Y is a lower bidiagonal matrix of order m. Then two matrices A

and B can be detrermined, using Given's rotations, to eliminate the unwanted

nozeros elements down the diagonal, such that

3" =A~yB

or

Y= AE 1 B H (2.30)

The substitution of (2.30) into (2.29) yields

NI H H, 0 (2.31)
NHXN 2 = [A~ ,o

I or

SX= N1 [A, l 1  , 0 IN 2  (2.32)

but

[ A B H, 0 I=[A. 1 , 0 [ 0 (2.33)
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thus I

X=Nj [ All, 0 B ]N, (2.34)1

If we let

N1 A=Uand B H N 2 = VH (2.35)

0 0

we find the formula given by (2.26). For the computation of the eigenvector matrix,

one needs only to store the matrix N1 which together with A give the matrix U.

Although, the SVD assures better accuracy of the eigenvectors and

eigenvalues, but it requires a large memory to store the data matrix, and extensive

computations on the matrix X to reduce it to a bidiagonal one. 3

I
I
I
I
I

I
I
I

42



I
I

Chapter 3

I PARALLEL ARCHITECTURE FOR MUSIC ALGORITHM

3.1 INTRODUCTION

I
With the advances in the area of VLSI it is now possible to design special

I purpose hardware for the implementation of various real time algorithms. The

customized hardware has two main advantages as listed below.

1) The given algorithm is executed at a high speed.

2) Cost and size of the hardware will be lower than the cost of a general purpose

computer.I
These advantages have led many researchers to probe into the possibility

of designing special purpose hardware. The development of special purpose

Ihardware will need to exploit pipeline, parallel and distributed processing

approaches to achieve high throughput rates. Hence in this section we present

I the first step in the development of a dedicated chip set to support MUSIC and

ESPRIT algorithm which has been explained in previous sections.

IThere are many architectures such as systolic array, SIMD Cordic

Processors and MIMD which can be used for parallel implementation. An

I appropriate structure which can exploit maximum parallelization to reduce the

computation time will be selected for real time implementation for the

particular application.

I
I
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3.2 LITERATURE SEARCH I
Various papers pertaining to parallelization of Householders and QR

algorithms were reviewed. C.F.T. Tang et al (121 and K.J.R. Liu [13] proposed

architecture for complex Householder transformations for triangularization of 3
the matrix. In their architecture they used single column with the number of

processors equal to the number of columns of the matrix. Each processor I
performs operation on each column. After each iteration the values of each

column are fed back to the same processors. But their architecture is proposed to I
perform triangularization of the given matrix whereas we are interested in

tridiagonalization of the covariance matrix. I
QR method for the tridiagonal matrix is implemented by W. Phillips [151. I

In his architecture, rectangular systolic array is used in which each processor

performs single iteration. When the first iteration is performed on the m th row 3
by the k th processor, the second iteration is performed on the (M-i) th row by

the (k-i) th processor and so on. But the disadvantage in this approach is that the 3
number of processors is dependent on the the number of iterations, i.e., if 5

iterations are required then 5 processors are required. But the exact number of

iterations is not known which leads to the uncertainity of the required number m

of processors. I
K.J.R.Liu [161 has proposed another kind of approach in which a systolic

array arranged in a matrix form is used. The number of processors is equal to

the number of elements of the matrix. During first step, the matrix Q is found. 3
Then new values of matrix A are then calculated using Q. Convergence for all

the elements of the matrix other than the diagonal elements is checked. If all 3
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the elements of the matrix other than the diagonal elements are not equal to

zero then the same systolic array is used for the next iteration. These iterative

computations are used until all the elements of the matrix except the diagonal

elements converge to zero. The obvious advantage is that the same set of

processors can be used for all the iterations. But the drawback is that this

architecture is proposed for the evaluation of eigenvalues on the dense matrix.

* In the next sub-section systolic architecture for the previously developed parallel

algorithms for the computations of covariance matrices, householders

I transformation and QR method is presented.i
3.3 HARDWARE BLOCK DIAGRAM OF MUSIC AND ESPRIT ALGORITHMSI

The hardware block diagram for the MUSIC Algorithm is shown in Figure

13.1. As seen in this figure, the data collected from the sensors is utilized to form

the covariance matrix. The eigendecomposition is performed using

Householders transformation and QR method. The Eigenvalues are used to find

Sthe number of sources and finally using the eigenvectors in Power method we

find the angle of arrival. The Hardware block diagram for ESPRIT algorithm is

shown in Figure 3.2. It is similar to the MUSIC algorithm but instead of power

3 method of MUSIC some more computations are performed to evaluate the angle

of arrival in case of ESPRIT.I
3.2 DATA COVARIANCE MATRIX FORMATION

3 Once the data has been collected by the sensors the data covariance matrix can

be computed using
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Figure 3.1: Hardware block diagram for MUSIC algorithm
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n

Xx(p).x(p)*
R XX = n (3.1)

n!

Where R × = Covariance of data matrix

x(p) = Vector of data output from every sensor at pth sample

given by (x I, x 2 . . . . . .. x 8) T

n =Number of samples g

The sampled data obtained from the sensors is used to obtain the data

covariance matrix given by equation (3.1). For instance, the element (ij) of Rxx

denoted by R ij is computed as: n
n

n x i (p) . x1(p)

P=
1

Since the covariance matrix is Hermetian, the computation of lower triangular

matrix of covariance matrix is sufficient to get complete information of the full 3
matrix.

The parallel computation of the data covariance matrix is performed using

systolic architecture. As stated earlier the covariance matrix is Hermetian and

computation of lower triangular elements of the covariance matrix is sufficient to

get the information for the entire matrix. Since there are 36 elements in the lower

triangular 8 x 8 matrix, systolic architecture will have 36 processors. Here a

triangular arrangement of the systolic array with global routing is considered as

shown in Figure 3.3. Each processor is numbered as Pmn where m is the row

number and n is the column number. The sampled data from the ith sensor is sent
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to the ith row and the ith column simultaneously. For example the sampled data

from the 3rd sensor is sent to all the processors in the third row and the third 3
column. Each processor performs multiplication and addition of two sampled data I
in parallel in all the processors for every clock cycle . Since there are 36 processors, 36

multiplications and 36 additions are performed simultaneously. Each processor has 3
a memory to store the product of multiplication which is added to the product

obtained during the next data cycle. Once the operations of multiplication and 3
addition for all the sampled data in all the processors is performed, the stored data

in each processor is then divided by the number of samples in all the processors in
parallel. The resulting output are used to form the data covariance matrix R

3.4 HARDWARE FOR HOUSEHOLDER TRANSFORMATIONS 3
As shown in Chapter 2, the determination of all the d and the new elements of the I
columns of the matrix can be computed in parallel. A modified architecture is

proposed for the computation of the tridiagonal matrix. Thus this algorithm can be

mapped on a hardware architecture with the number of processors equal to m+1, 3
where m is the order of the matrix. Arrangement for 8 x 8 matrix is as shown in 3
Figure 3.4. The columns of the matrix are sent to each processor in a pipelined

fashion in reverse order such that the last element of each column becomes the first 3
element. The Processor PEI is used to find the w and c required by other processors

to find the d. Processors PE2, PE3... PE8 are used to find d using the value of w and c 5
found in the first processor. At the same time the first processor is used for the

evaluation of 3. The first element of the first column and P are the output of the

first iteration which are used as input for evaluation of eigenvalues using QR

method. All the d , are evaluated in parallel and are sent to
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the processor PE9. The processor PE9 is exclusively used for the determination of v

using d and w. The v are then routed back to all the processors. The processors £
PE2, PE3... PE8 use w, d and v to find the new values of the elements of the columns 3
in parallel. The counter is used to set the number of iterations to m-2. For m-2

times, the intermediate results are used in feedback loop and the same set of 5
processors are used repeatedly. The feedback loop has a FIFO memory to temporally

store all the elements of the column until operations on previous iteration are I
completed. For the first iteration, operations on 8 x 8 matrix are performed hence all

the processors are utilized. For the second iteration, operation on 7 x 7 matrix are

performed. Now the first column of the matrix is already computed; therefore new 3
elements of the second column from PE2 are fed back to PE. Thus for the second

iteration, PE2 does not have any column to work on and is thus disabled. All other 3
processors perform same operation as in the first iteration, but the elements of each I
column are reduced by one element. Thus for every new iteration the columns and

the elements of the columns keeps on reducing. 3
3.5 PARALLEL ALGORITHM FOR THE TRIDIAGONAL QR ALGORITHM I

The given factorization, if applied to a full m x m data covariance matrix Rx 3
will result in the operational cost of every factorization being 0 (M3 ) [421. This

follows from the QR algorithm where by setting A1 = R, the first phase consists of !

calculating an upper triangular matrix Rk and a unitary matrix Qk such that Ak = Qk

Rk and during the second phase, the product R k Q k is performed to obtain A k+ I
k=l,..., n-I, where n denotes the number of iterations. For this reason, it is generally

not feasible to carry out the QR transformations on R ,,, Instead, if R,, is first

reduced to a tridiagonal matrix T using Householder's transformations, the i

subsequent transformations in chapter 2 will always give a tridiagonal matrix, and

5
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thus, only (m-I) subdiagonal elements have to be eliminated to obtain the matrix Rk

i during every factorization. Thus, the cost of the eigendecomposition falls

substantially from O(m 3) to O(m) [42]. Furthermore, Phillips and Roberston [15]

proposed a sequential algorithm for updating the entries of the tridiagonal matrix

i without calculating, in the first step, the matrix R k • Although this algorithm

reduces the processing time to some extent by avoiding the computation of R k by

I Q k at every iteration, and also the storage of the matrix Rk , but still every iteration

in the algorithm requires m steps. For n iterations, mxn steps are required to

perform the eigendecomposition of the tridiagonal matrix. For the case of a matrix

of order 8 and for 11 iterations, various steps are shown in Figure 3.5, where (ij)I th
denotes the pairs of a(i,.) and b(i, .) at the j step.I

At every step, one pair of a's and b's are computed. For example, in step 5

a(5,1) and b(5,1) are computed. Every iteration requires eight steps . The last

elements shown in Figure 3.5 are a(8,11) and b(8,11), and they are computed after 88

computation steps. In this section, an attempt is made to parallelize this sequential

I algorithm to reduce the number of steps from mxn to 2(m+n)-10 steps. A

parallel/pipelined algorithm has been developed and is described in terms of a

simple program consisting of odd and even steps. During an odd step, the odd

Iterms (a(i,.), b(i,.)), i=1,3,...m-1, of the matrix T given by (2.22 ) are updated in parallel.

Likewise, during an even step, the even terms a(i,.), b(i,.), i=2,4...,m, are updated in a

I similar fashion. A pseudocode of this algorithm is given in the following:

i
I Step Computation performed sequentially

1 (1,1)
I 2 (2,1)
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6 ((41)
7 (5,)1),1

9 (1,2)
10 (2,2)
11 (3,2)
12 (4,2)
13 (5,2)
11 (632))

16 (74),8,))

13 (1511))
82 (2,11)
83 (3711)

84 (4,11))
85 (5,11)
86 (6,11)

87 (7,11)
88 (8,11)3

Figure 3.5. Example of the sequential algorithm for updating the
entries a's and b's of a tridiagonal matrixI
(matrix order = 8,number of iteration =11)

x(1,i)=0;b(1,i)=0;a(O,i)=0; b(m+1,i)=0;c(0,i)=1;s(0,i)=0;1
c(m+l,i)=1; s(m+l,i)=0;
n = number of iterations

for k= 1,n+(m-2)/2

Odd Steps3

for j=1,m-1,2
i=k-(j+1)/2

Update the a's and b'sI
if (i<0)

b(j,i+1 )=b(j,O)3
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I a(j,i+1 )=a(j,O)
else if ( i > n-1)

b(j,i+I )=b(j,n)I ~~ ~ )ajn
elseI~+L)=sjli *j,0+~-Ii.aji

if ( x(j+1,i) = 0)

else S,=

Ir=sqrt( I b(j+1,i) I +x(j+1,i) 2

c(j,i)=x(j+1,i) / r

I ~ ~~~~endifs(,)b+1i)/
w'=c(j,i) x(j+1,i)+s*(j,i) b(j+1,i)I v=c(j-I,i) c(j,i) b*(j+I,i) + s*(j,i) a(j-s-,i)
b(j,i+1)=s(j-1,i) wI a(j,i+1)=c(j-1,i) c(j,i) w + s(j,i) v

Computations of eigenvectors

I for 1=1,m
u(j,l,i+1)=c(j,i)u(j,l,i).+S*(j,i) u(j+1,l,i)
u(j+1,l,i+1) =-s(j,i) u(j,l,i)+c(j,i) u(j+1,l,i)I end for

endif
end for

Even steps

for j=2,m,2

i=k -j/2

Computation of the a's and b's
if (i<0)

b(j,i+1 )=b(j,0)I a(j,i+1 )=a(j,O)
else if (i >n-1)

b(j,i+1 )=b(j,n)I' a(j,i+1 )=a(j,n)
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if ( x(j+1,i) = 0)

else
2 2

r=sqrt( i b(j+l,i) I +x(j+1,i))3

c(j,i)=x(j+l,i)/r

endifI
w=c(j,i) x(j+1,i)+s*(j,i) b(j-,-,i)
v=c(j-l,i) c(j,i) b*(j+1,i) + s*(j,i) a(j+1,i)3
b(j,i+1)=s(j-I,i) w
a(j,i+l)=c(j-I,i) c(j,i) w + s(j,i) vp

Computations of eingenvectors

for 1=1,m3

u(j+1,l,i+1) = -s(j,i) u(j,1,i)+c(j,i) u(j+1,l,i)
end for

end if

enfrend for

An example of this algorithm applied to a matrix of order 8, and for 11 iterations is

shown in Figure 3.6, where (i ,j) is defined earlier.g
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Step Compuations performed in parallel11 (1,1)

2 (2,1)
3 (1,2) (3,1)
4 (2,2) (4,1)
5 (1,3) (3,2) (5,1)
6 (2,3) (4,2) (6,1)
7 (1,4) (3,3) (5,2) (7,1)
8 (2,4) (4,3) (6,2) (8,1)
9 (1,5) (3,4) (5,3) (7,2)
10 (2,5) (4,4) (6,3) (8,2)

11 (1,6) (3,5) (5,4) (7,3)
12 (2,6) (4,5) (6,4) (8,3)
13 (1,7) (3,6) (5,5) (7,4)
14 (2,7) (4,6) (6,5) (8,4)
15 (1,8) (3,7) (5,6) (7,5)
16 (2,8) (4,7) (6,6) (8,5)
17 (1,9) (3,8) (5,7) (7,6)
18 (2,9) (4,8) (6,7) (8,6)
19 (1,10) (3,9) (5,8) (7,7)
20 (2,10 (4,9) (6,8) (8,7)
21 (1,11) (3,10) (5,9) (7,8)
22 (2,11) (4,10) (6,9) (8,8)
23 (3,11) (5,10) (7,9)
24 (4,11) (6,10) (8,9)
25 (5,11) (7,10)
26 (6,11) (8,10)27 (7,11)
28 (8,11)

Figure 3.6. Example of the parallel/pipelined algorithm for updating theIentries a's and b's of a tridiagonal matrix
(matrix order = 8,number of iteration = 11)

In the following, some of the computations performed by this parallel/pipelined
algorithm are given below

IComputations performed during stepl

Sx(2,0)=-s(5,7).b*(1,O)+c(OO).a(1,O)

I 57



if ( x(2,O) = 0)3
C(1,0)=1

eles(1,0)=0

r=sqrt( I I b(2,0) 1I 2 +x(2,0) 

c(1,0)=x(2,O)/r

edfs(1,0)=b(2,0)/r

w=c(1 ,0).x(2,0)+s*(1,0) b(2,00)
v=c(0,O) .c(1,0) b*(2,0) + s*(1,0) a(2,O)
b(1,1)=s(O,O) .w1
a(1,1)=c(O,O) c(1,0) w + s(1,0) v

Computations performed during step 2

x(3,0)=-s(1 ,0).b*(2,O)+c(1 ,0).a(2,O)3
if ( x(3,0) = 0)

c(2,0)=1

else s20=

r=sqrt( I I b(3,0) 1 1 +x(3,O) 2)

c(2,0)=x(3,O)/r

edfs(2,0)=b(3,0)/ r3

w=c(2,0) x(3,0)+s*(2,0) b(3,0)
v=c(1,0),c(2,0) b*(3,0) + s*(2,0) a(3,0)
b(2,1)=s(1,0) w
a(2,1)=c(1,0) c(2,0) w + s(2,0) v

Computations performed during step 3

x(4,0)=-s(2,0).b*(3,0)+c(2,0). a(3,0)I
If( x(4, 0) = 0)

c(3,0)=l
s(3,0)=0

else

r=sqrt( I b(4,0) I +x(4,O))

c(3,0)=x(4,0)/ r

endif s(3,0)=b(4,0)/ r

w=c(3,0) x(4,0)+s*(3,O) b(4,)

v=c(2,0) c(3,0) b*(4,0) + s*(3,0) a(4,0)
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I b(3,1)=s(2,0).
a(3,1)=c(2,0) c(3,0) w + s(3,O) v

Ix(2,1 )=-s(O,1).b*(1,1 )+c(0,1.al)
if ( x(2,) =O0)

c(1,1)=1
s(1,1)=O

else

r=sqrt( I b(3,0) I +x(3,0)

c(1,1)=x(2,1L)/rI s(1,1 )=b(2,1)/r
endif
w=c(1,1).x(2,1)+s*(1,1) b(2,1)
v=c(O,1) c(1,1 b*(2,1) + s*(1,1) a(2,1)
b(1,2)=s(O,1) -w
aQ1,2)=c(O,1) c(1,1) w + s(1,1) v

Computations performed during step 4

I(,)-(,)b(40+(,)a4O
if ( x(4, 0) = 0)I c(4,0)=1

ele s(4,0)=0

I2 2
r=sqrt( I b(5,0) I +x(5,0)

c(4,O)=x(5,) / rI s(4,0)=b(5, 0)/r
endif
w=c(4,0).x(5,0)+s*(4,0).b(5,0)
v=c(3,0).c(4,0) b*(5,0) + s*(4,0) a(5,0)
b(4,1)=s(3,0) w
a(4,1)=c(3,0) c(4,0) w + s(4,0) v

x(3,1)=-s(1,I ).b*(2,1 )+c(1,1).a(2,I)I if ( x(3,1) = 0)
c(2,1 )=1
s(2,1 )=0I else

r=sqrt( I b(3,1)1I +x(3,1))

c(2,1)=x(3,1)/r
s(2,1)=b(3,1)/rI endif
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w=c(2,1) x(3,1)+s*(2,1) b(3,1)
v=c(1,1) .c(2,1) b*(3,1) + s*(2,1) a(3,1)
b(2,2)=s(1,1) w I
a(2,2)=c(l,l) c(2,1) w + s(2,l) v

The algorithm updates the pairs of a's and b's in the following manner

Step I and 2 one pair

Step 3 and 4 two pairs

Step 5 and 6 three pairs 3
Step 7 to step 22 four pairs

Step 23 and 24 Three pairs

Step 25 and 26 two pairs 3
Step 27 and 28 one pair I

This algorithm is also suitable for VLSI implementation, using an array of

m/2 processors Prj, Pr 2,,..., Pr m/2 and (m+2 ) cells clo, cl,..., cm+l constituting a

local memory, as shown in Figure 3.7. Each processor in the array performs certain 3
computations such as floating point operations and square roots.

If the pairs ( a(i,.), b(i,.)), ( c(i,.), s(i,.)), i=0,2,...,m+l , are stored respectively in 3
cl0 c11,..., clml, then during an odd step , each processor Pri, respectively

1) accepts

a) c(2i-2, k ), s(2i-2, k ) from cell cl 2i-2 3
b) a(2i-1,k), b(2i-l,k) from cell cl 2i-1

c) a(2i,k), b(2i,k) from cell cl 2i 3
2) computes x(2i,k), c(2i-1,k), and s(2i-1,k)

3) updates a(2i-1,k) and b(2i-l,k) to become a(2i-1, k+1) and b(2i-1, k+1) respectively

4) stores c(2i-l,k), s(2i-1,k), a(2i-l,k+l), and b(2i-1, k+1) in cell cl 2i-1

and during an even step, each processor Pri, respectively

I
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1) accepts

a) c(2i-1, k ), s(2i-1, k ) from cell C12i-1i

b) a(2i,k), b(2i,k) from cell Cl2i

Sc) a(2i+l,k), b(2i+l,k) from ceil cl2i 1

3- 2) computes x(2i+l,k), c(2i,k), and s(2i,k)

3) updates a(2i,k) and b(2i,k) to become a(2i, k+1) and b(2i, k+1) respectively

4) stores c(2i,k), s(i,k), a(2i,k+l), and b(2i, k+l) in cell cl 2i

In the first step of the algorithm, the pairs (c(0,0)=1, s(0,0)=0), (a(1,0), b (1,0)),

and (a(2,0) , b(2,0)) stored in clo, cl and c12 respectively, are entered in the first

processor Prj. These values are used to form x(2,0), and to compute c(1,0) and s(1,0)

3 according to the algorithm. These two values (c(1,0),s(1,0)) are stored in clto be used

3 during the next step. The computed values of c(1,0) and s(1,0) are used along with

c(0,0), s(0,0), x(2,0), a(2,0) and b(2,O) to update a(1,0) and b(1,0) to become a(1,1) and3b( 1,1)

I At the second step, the first processor accepts c(1,0), s(1,O), a(2,0) , b(2, 0), a(3,O)

3and b(3, 0) to update in a similar fashion a(2,0), and b(2,0) to a(2,1), and b(2,1).

At the third step, while the second processor is updating a(3,0) and b(3,0) to become

3 a(3,1) and b(3,1) respectively, the first processor is used to update a(1,1) and b(1,1) to

become a(1,2) and b(1,2) respectively.I
3 At the fourth step, the second and first processors update in parallel the two

pairs (a(4,0), b(4,0)) and (a(2,1), b(2,1)) to (a(4,1), b(4,1)) and (a(2,2), b(2,2)) respectively.

5 The algorithm proceeds in this fashion so that the array is updating the entries of

I1
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the tridiagonal matrix in a pipeline fashion in the iteration as shown in Figure 3.8

for m=8 and for 11 iterations.

It can be noticed that after 28 steps, the updated entries of the matrix T are

obtained. This result can be generalized to any matrix of order m, and for any 3
number of iterations n, where it is not difficult to show that 2(n+m)-10 steps are

needed to achieve the desired result. Although, the preceding method would serve

to correctly obtain the updated entries after a fixed number of iterations, it can be

extended to accomplish the same task for an unlimited number of iterations, until i

the convergence is satisfied. 3

The previous array , shown in Figure 3.9, can be extended to include another

m/2 processors P1 ,P 2 -...,Pm/2 , as shown in Figure 3.9, to update the matrix of the

eigenvectors. Given the matrix U= N H , obtained from Householder's I
transformations, and the matrix Q = Q, Q2 ... Qn, where n is the number of iterations. 3
The product of Q H by U, to obtain the matrix of eigenvectors of the original

problem, may be computed also in 2n+m-2 steps. If each column of the matrix U = I

N H is stored in an array of m elements consisting of a FIFO as depicted in Figure 3.8

, then during an odd step, the values stored at the top of the independent pairs of I
arrays (1,2), (3,4),..., (m-, m) are transfered in parallel to the processors P1 ,P2 , I

..,Pm/2 respectively. The rotation parameters generated during this particular step

are also sent to the corresponding processors. That is, the rotation parameters 3
generated by Pr1 are sent to P1 , and the rotation parameters generated by Pr 2 are

sent to P 2, and so on. Once the top elements are updated, they are transferred to the I
bottom of the corresponding arrays The procedure continues until all the elements 3
stored in the array are updated This is depicted in Figure 3.6(a). Similarly, during

I
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an even, updating the entries of the independent column pairs (2,3), (4,5),..., (m-2,

I m-i) is shown in Figure 3.6 (b)

1 3.6 HARDWARE IMPLEMENTATION OF THE POWER METHOD

Once the eigenvectors have been computed, the values of the eigenvectors

are utilized to calculate the power

PM (0) = (3.2)a*(O) E hE* n a(0)

As seen from this equation the evaluation of a*(0) E nE*n a(0) requires squaring of

the product of rowvector of a(0) and the eigenvector matrix E n . Hence the product

of a(O) and E , is evaluated and then the product obtained is squared and

accumulated for all the values in the array manifold. The hardware design is

shown in Figure 3.10. It consists of a set of 8 processors. Each processor finds the

product of a(0) and columns E n in parallel. The product obtained is then summed

using adders. The evaluation E* n a(0) is similar to the evaluation of a"(O) E n and

hence the product of a*(0) E n is squared and added. The angle of arrival is thus

calculated for different values of the array manifold. This computed value Q m (0) is

inverse of P m (0) is different for different angle. The angle for which Q m (0) is

minimum is the angle of arrival.

3.7 CONCLUSIONS

Flow diagram for the entire MUSIC algorithm is shown in Figure 3.11. Different

stages in the MUSIC can be substituted by different hardware architecture as

Iexplained above. Hence the entire pipelined stage of MUSIC algorithm consist of
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1) Data covariance matrix stage

2) Householders stage 5
3) QR stage

4) Power method stage

Various stages along with buffers ate explained in next chapter. 3
I

I
I
i
I
I
i
i
I
U
i
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Ecl C 1 111 c13 c14 c15 c17 c18

(a)

(b)

c ( i,k)I s(i,k)
a(i,k) a(i,k+ 1)
b(i,k) b(i,k+1)

a(i+lI,k)I ~ -~)A ~ ~ ~ )xilk=s~-~)b(~)cilkaik
s(i-l,k) if (x(i+1,k) = 0)

c(i,k)=1.

ess(i,k)=O.

r = sqrt(I b(i+1,k)I1.I1b(i+1,k) I + x(i+1,k). x(i+1,k))
c(i,k)= x(i+1,k) /r
s(i,k)= b(i+1,k)/r

end if
w= c(i,k) x( i+1,k) +s*(i,k)b(i+1,k)I v= c(i-l,k)c(i,k)b*(i+1,k) + s(i,k)a(i+l,k)
b(i,k+1)=s(i-l,k) w

Figure. 3 . Updating the eigenvalues, (a) odd steps,
(b) even stepsa(i,k+lI)=c(i-1,k)c(i,k)w+s(i,k)v

Figure. 3.6. Updating the eigenvalues, (a) odd steps, (b) even steps
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Figure.3.6 (a) Updating the eigenvectors during an odd stepI

c~i~kI
s(i,k)

p u(i,jk+1 )= c(i,k) u(i,j,k)+s*(i,k) u(i+1,j,k)

Iu(i+l,j,k+l)= -s(i,k) u(i,j,k)+c(i,k) u(i+l ,j,k)3

u(i,j,k) u(i+l1,j,k)3

u(i,j,k+I) JFu(i+l,j,k-.-)
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Figure 3.7: Hardware For Power Method
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Chapter 4

DEVELOPMENT OF ARCHITECTURE FOR MUSIC ALGORITHM AND

GENERALIZED PROCESSING ELEMENT

4.1 PIPELINED STAGES AND BUFFERS IN MUSIC ALGORITHM

The MUSIC algorithm is executed using four pipelined stages namely the

covariance matrix formation, Householder method, QR method and the power

method as stated previously. These pipelined stages along with buffers are

shown in Figure 4.1. The covariance matrix stage which is the first stage collects

the sampled data from 8 different sensors and computes 8x8 covariance matrix.

The covariance matrix has 36 processors, all of them perform the same operation

in parallel. The Householder method which reduces the covariance matrix to a

tridiagonal matrix forms the second stage. The data generated in first stage is

I pipelined to the second stage through eight FIFO buffers. These FIFO buffers

store data for transfer to the Householder stage. The hardware for the

Householder method has 9 processors. PEI to PE8 perform computations on

each column of the covariance matrix and PE9 is used to compute data required

by other processors. The tridiagonal matrix is reduced to a diagonal one by QR

I method which forms the third stage. Data generated by PE1 of second stage is

pipelined to PEI of third stage through a two word deep FIFO. The third stage

I has 2 kinds of processors, PEl which computes eigenvalues and PE11 to PE18,

which compute eigenvectors. Each processing element PE11 to PE18 generates

I eight eigenvectors which form the rows of the 8x8 eigenvector matrix.

I Eigenvectors computed by the third stage are pipelined power method which

forms the fourth stage. It has eight processors PEI to PE8 and each processor

works on the array manifold and the column of the
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Ieigenvector matrix. Since QR method produces rows of the eigenvector an

hardware switching method is used to convert rows to column before passing on

to power method stage. Power method has 8 processorsthe eigenvector matrix

needs to be output of PE8 gives the inverse of the power. This PE8 produces

output for different angle of the array manifold. In the following section, a

Igeneralized PE architecture is described.

I4.2 THE GENERALIZED PROCESSOR

I
As seen above there are four pipelined stages with eight different kinds of

1processing elements. All these processors perform similar arithmetic functions.

Thus, various functions performed by different processors can be grouped

Itogether and performed by one generalized processor. Therefore instead of using

Ieight different processors, a single generalized processor can be used.

IThe generalized processor named GP, has an architecture which is

designed to maximize the throughput for different PEs required in the MUSIC

Ialgorithm. The internal architecture of GP has the capability to execute various

Ioperations in the MUSIC algorithm. After studying the capabilities required for

the different PEs, a list of the following six arithmetic functions is compiled.

I1) Addition

2) Subtraction

3) Multiplication

14) Division

5) Multiplication, Addition and Accumulation

I6) Square rooting
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Hence instead of using a generalized Arithmetic Logic Unit (ALU) as used in

commercially available microprocessors, a block of three specified arithmetic I
functional units are utilized. These functional units are: g

1) Addition/Subtraction Unit 3
2) Multiplication/Division Unit

3) Square Root Unit. 3
Computed data can be stored temporarily in embedde. "andom Access Memory

(RAM) or sent to the output port. The operation of data storing and I/O is

performed using data bus. 3

The processor has eight, 16 bit general purpose registers. These registers I
are named as A, B, C, D, E and F. Each 16 bit register can also be used as two 8 bit

registers in concatenation. It also has two index registers X and Y. Each index

register is 8 bits wide. GP also has a 8 bit program counter (PC) and program 3
status word register (PSW). U
Thus the major components of the generalized processor GP are as follows:

1) Address bus

2) Data bus I
3) Floating point adder/ subtracter.

4) Floating point multiplier/divider. I
5) Square rooter.

6) Embedded data memory.

7) Two Input ports. 3
8) Two Output ports.

9) Control unit I
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The above mentioned components along with the arrangement of the registers is

Ishown in Figure 4.2 and each of them are explained as follows:

I --

A < 0I 0
N B UI c T

D <- RAM
E

F

PC PWD
I 0

N U
2 T

2

Figure 4.2 Architecture of Generilized Processor GP

Data and Address bus:

The data and the address bus are used for storing data in RAM and to transfer

data through I/O port. The data movement in the chip occurs over a bi-

directional 8 bit bus. The address is specified for internal data memory and I/O

port by unidirectional address bus.

Floating point multiplier and divider:

GP has a dedicated multiplier/divider and is controlled by the control unit. The

multiplier can perform 8 bit and 16 bit multiplications. The divider can perform

8 or 16 bit division (i.e. 8 or 16 bit divisor and 8 bit dividend). Since
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multiplication and division are not performed in parallel in MUSIC algorithm,

both of these operations can be performed by a single unit. 5
Floating point adder/subtracter: I
Adder and subtractor can perform 8 and 16 bit addition or 8 and 16 bit

subtraction. These various options are again specified by the control unit of GP.

After studying different process requirements of the MUSIC algorithm it was 3
unveiled that the addition and subtraction are not performed simultaneously in

a single cycle. Hence one single unit can be used to perform addition and i
subtraction. 3

Square Rooter: 5
GP has a built in square rooter which performs square root operation on a 16 bit

data and outputs 8 bit result. Since the square rooting is computed several times i
during the entire process, fast computation of square root is also required for

high throughput. I
Data Memory:

GP has a embedded RAM which is 8 bit wide and 256 byte long. It is mainly used i
to store data that is input from other processors or store data generated by the 3
processor which is used for further computation. I
Input/Output port:

The processor nas two input and two output ports. Each of them is 8 bit wide i
and performs parallel data transfer. These input and output ports are memory 3
mapped.

7
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Control Unit:

IThe micro-programmed control unit generates control signals required for the

3 operation of GP.

3 4.3 INSTRUCTION SET DETAIL

I This section contains detailed information about each instruction in the

3 GP instruction set.

Notation:

5 Each instruction description contains symbols used to abbreviate certain

operands and operations. Table 1 lists the symbol used and their interpretation.

3Table 
_

D Destination Operand

3 (D) Contents of Destination Operand

M Memory Location

(M) Contents of Memory Location

Sopr Operand

R Any of the general purpose registers

(R) Contents of the Register

3 S Source Operand

(S) Contents of Source Operand

* $ Hexadecimal Number

_ # Immediate Addressing Mode
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Various instructions used are explained below. These instruction are discussed I
in alphabetical order.

1) Add 3
Operation S+D =*D

Syntax: ADD S,D 3
Description: Add source operand S to the destination operand D and store the

result in destination operand. I

2) Divide

Operation: S+D *D 5
Syntax: DIV S,D

Description: Divide source operand S by the destination operand D and store the I
result in destination operand. 3

3) Decrement 3
Operation R t (R) -$01

Syntax: DEC (opr) U
Description: Subtract one from the contents of Register R. 3

4) Increment 5
Operation R 4= (R) +$01

Syntax: INC (opr) I
Description: Add one to the contents of Register R. 3

5) Jump on Zero 5
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Operation PC < Effective Address iff Z=I

I Syntax: JZ (opr)

Description: Jump to the effective address if zero bit is set.

I6) Jump on Non Zero

Operation PC 4= Effective Address iff Z=O

I Syntax: JNZ (opr)

Description: Jump to the effective address if zero bit is not set.

1 7) Jump

Operation PC 4= Effective Address

I Syntax: JMP (opr)

Description: Jump to the effective address.

1 8) Load

Operation D = (M)

I Syntax: LD (opr)

Description: Load the contents of memory into destination register D.

9) Multiply

Operation SxD =*D

Syntax: MUL S,D

Description: Multiply source operand S by the destination operand D and store

the result in destination operand.

I
10) Multiply Add Accumulate

I Operation D+SIxS2 =D
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Syntax: MAC SIS2,D

Description: Multiply source operand SI by another source operand S2, Add to I
the destination operation D and store the result in the destination operand.

11) Negate 3
Operation R 4- -(R)

Syntax: NEG (opr)

Description: Replace the contents of register R with two's complement.

12) Register Transfer 3
Operation D i (S)

Syntax: TR (opr) 5
Description: Transfer the contents of source register S to the destination registerD.|

I
13) Square Root

Operation S =*D

Syntax: SQRT S,D

Description: Square root of source operand S and store the result in destination l

operand D. 3
I

14) Square

Operation SxS =D I
Syntax: SQR S,D 3
Description: Multiply source operand S to itself and store the result in the

destination operandD 5
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15) Store

I Operation S * (M)

Syntax: ST (opr)

Description: Store the contents of source register S into the memory location.

II
16) Subtract

I Operation S-D =*D

Syntax: SUB S,D

Description: Subtract source operand S from the destination operand D and store

i the result in the destination operand.

117) Square Add Accumulate

Operation D+SxS =*D

Syntax: SAC S,D

3 -Description: Multiply source operand S to itself, Add to the destination operand

D and store the result in destination operand.

-I
*This generalized processor is used for different computational modules of

pipelined MUSIC algorithm. This processor GP as used as different PE are

n explained in detail. Programming details are also given.

14.4 PROGRAMMING DETAILS

Covariance Matrix
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I
The covariance matrix is computed using 36 processors. Each processor inputs

two samples from two different sensors. The values of the samples are i
multiplied added and accumulated for 4800 times. Once this process is

completed, it is divided by the sample number (4800) to get the element of each

covariance matrix. The computed elements of the covariance matrix are 3
outputted to the set of buffers which form input to the Householders stage. I

LI LD F #4800 ;Load the counter to 4800 samples

LD AH IN1 ;Input one of the values from IN1 port
LD AL IN2 ;Input another value from IN2 port

MAC A ;8 bit multiply add and accumulate in D

register 5
DEC F

JZ Li ;Repeat the loop for 4800 times i

LD A #4800 3
DIV DA ;Divide D by A

ST D OUT1 ;Output value of covariance matrix by OUTI 3
;port

Householders Method 3
The Householder method has nine processing elements PEl to PE9. The

elements of the column from the covariance matrix form input to the eight 3
processor - PEI to PE8 of the Householders method.

PEl

PEl computes diagonal and sub diagonal elements. One of the input and both 3
the output ports of GP are utilized. The diagonal and the subdiagonal elements
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computed are outputted to the next stage. The w and c computed are outputted

I to other processors of Householders method.

LD X #00

I LD FH #7 ;Initialize the counter

Li LD AH INI ;Load the elements of the column

ST AH,X ;Store the values of column in memory

ST AH OUT2 :Output the values of w7 to w2 to processor

2 ;to 7 through OUT2 port
* DEC FH

3 JZ Li ;Repeat 7 times

L2 LD AH,X ;Load AH with w

3 SAC AH ;Square w in order to get s

DEC FH ;Repeat the process for 7 times

JNZ L2

SQRT D ;Square root gives beta

ADD AH,DH ; Add beta to r(1) to calculate w(1)

ST AH OUT2 ;Send the value of w to other processors

R ;through OUT2

I T R DLA

3 MUL A ;Mult beta with w(i)

ADD A,D ;and Add it to r(1) to compute c

NEG DL ;negate beta which is sub diagonal element

ST DL OUT1 ;send it to next stage

5 PE2 TO PE8

The processors PE2 to PE8 are used to compute d and new values of the elements

of the matrix. Two input and one output port of GP are used. One input is w
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and c from PEI and the other input is v from PE9. The d which is computed

forms the output to PE9. PE2 to PE8 also compute new values of the elements of I
the matrix.

LD X #00 ;Initialization X and Y 3
LD Y #00

LD D #0000 3
LD FH #7 ; Initialization Counter

LI LD AL INI ;Get in the value of r

ST AL X+0 ;Store in memory 3
LD AH IN2 ; Get value of w from PE1

ST AH X+8 ; Store in the memory I
INC X ;Repeat for 7 times

DEC FH

JNZ Li 3
LD AH IN2 ;Get value of c from PE1

ST AH X+8 ;Store in memory 3
LD AH Y ;Load r

LD AL Y+8 ;Load w

MAC A ;Mult add and accumulate w and r =d 3
DEC FH

JNZ L2 ;Do for 7 times 3
LD CH Y+15 ;Get the value of c

DIV D,CH ;compute d=d/c

ST BL OUT2 ;send output to PE9 3
LD FH #7 ;Initialize counter =7

LD FL #7 £
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LD X #00

I LDY Y #00

L3 LD AH INI ;get the values of v from PE9

ST AH X+17 ;store in memory

I INC X

DEC FH

JNZ L3

LD AH Y+14 ;get fixed the value of w

ILD BH Y+22 ;get fixed value of v
I LD BL Y+8 ;get variable value of w

L4 LD AL Y+16 ;get variable value of v

I LD CL Y ;load CL with r

MULA ;compute new value of elements of column

MULB

SUB CL,AL

SUB CL,BL

ST CL,Y

INC Y ;repeat seven times

DEC FL

CMP #00

JNZ L4I
PE9

PE9 computes value of p and v. It utilizes 2 input and 1 output ports. One of the

I inputs is w and c from PE1 and the other input is d from PE2 to PE8. The v

which is computed is sent to PE2 to PE8 through the output port.
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LD X #00 ;Initialize X and Y

LD Y #00I

LD FL #7

LD FH #7I

LI LD AL INI ;get the value of d from processors PE2 to PES

ST AL X

LD BL 1N2 ;bring in w3

ST BL X+8 ;store in the memory

INC X ;repeat 7 timesI

DEC FL3

CMP FL #00

JNZ LI

IN BL 1N2 ;get the values of c

SQR BL ;square c

L2 LD AL Y ;load d3

LD AH Y+8 ;load w

MACA ;multiply add and accumulate d&w =p3

INC Y

DEC FH ;repeat 7 timesU

CMP FH #003

JNZ L2

DIV BL,DL ;p=p/c*c3

T R DL,AL

LD AHX+8

MULA ;multiply p and w3

LD C,X

SUB C,A ;compute v3
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LD CH OUTI ;Output v to PE2 to PE8

I QR Method

PEI

LD X #00 ;Initialize

LD AH X ;Load value of Sine

INEG AH ;Negate it

LD AL X+2 ;Load value of b(sub diagonal element)

IMUL A ;Muliply b with -sin

LD BH X+1 ;Load BH with Cos

LD BL X+4 ;Load BL with a(diagonal element)

1MUL B ;Multiply a with Cos

ADD A,B ;Add them to compute r

ITR ,

ISQR A ;Comnpute r
LD BH X+3 ;Load BH with b

ISQR BH ;Square b

ADD A,B ;Add them together

ISQRT A

CMP AL,#00

JGT LI

LD DH #00

LT) DL #01

IJMP L2

LI DIV AL.C

TR AL,DL

I LD CH- X+4
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DIV AL,DH

L2 ST DR X+63

ST DL X+7

TR DL,BHI

TR C,A3

MUL A,B

LD BR X+63

LD BL X+3

MUL B
ADD A,B3

ST A X+8

LD AR X+1

LD AL X+7

MUL A
LD BR X+33

MUL A,B

LD BR X+63

LD BL X+5

MUL B
ADD A,B3

ST A X+9

LD AH X3

LD AL X+8

MUL A
ST A X+23

LD AR X+1

LD AL X+73
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MUL A

LD BH X+6

LD BL X+9

MUL B

ADD A,B

4.5 CONCLUSIONS

I Thus a generalized processor can be used as various processing

elements for MUSIC algorithm. It can be programmed as shown above for

different modules in MUSIC. Hence instead of designing different processing

I elements, a generalized processor can be used.

I8

I
I
I
I
I
I
I
I
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Chapter 5

DOA ESTIMATION FOR BROAD-BAND SOURCES USING "BROAD-BAND
SIGNAL-SUBSPACE SPATIAL-SPECTRAL (BASS-ALE) ESTIMATION."

ALGORITHM I

5.1 INTRODUCTION iI
There are many Broad band DOA estimation algorithms available in the

literature [26..27, 29, 36, 39..41]. Some of them are extensions of narrow band cases and

others are transformed to specific Broad band algorithms. One of the broad-band

methods proposed by Buckley and Griffiths [29] uses a focused covariance matrix as a

temporal/spatial focused observation for broad-band source representation. A modal 3
decomposition signal subspace algorithm has also been discussed by Su and Morf [27]

and in their approach they decompose the rational spectra of the sources into 3
elementary modes characterized by their poles.

l,; iiis chapter two algorithms for DOA estimation of Broad-Band signals are described.

First, Coherent-Signal-Subspace processing proposed by Wang and Kaveh [401 is 3
presented. The second algorithm proposed by Buckley and Griffiths namely "Broad-

Band Signal-Subspace Spatial-Spectral (BASS-ALE) Estimation." is discussed in detail. 3
An architecture for BASS-ALE algorithm is also presented.

5.2 "COHERENT SIGNAL-SUBSPACE PROCESSING FOR DETECTION AND 3
ESTIMATION OF ANGLES OF ARRIVAL OF MULTIPLE WIDE-BAND SOURCES" I

Wang and Kaveh proposed a model of M sensors organized in a geometry

known to the processor. It is assumed that there are d signal sources that are stationary

over the observation period and are rep:esented by the vector 3
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s(t) = I s1(t), s2(t), ... , sd(t) IT (1)

Let P,(f), a source spectral density, be an arbitrary dxd non-negative Hermitian matrix

unknown to the processor. Also, let P,(f), an MxM noise spectral density, be known
2

except for a constant a. Then, the array output x(t),A, has a spectral density matrix

P,(f) = A(f) P,(f) A'(f) - aPn(f) (2)

where t denotes complex conjugate transpose and A(f) is an Mxd transfer matrix of the

source-sensor array system with respect to some chosen reference point. Furthermore,

the number of sensors M is supposed to be greater than the number of signals d.

The array x(t) is resolved in the temporal domain into non-superimposed

narrow-band elements by using the Discrete Fourier Transform (DFT). The decomposed

components are uncorrelated and the covariance matrix for the component f, can be

expressed as
21 1 an

cov(X(f))) T Pf) = - A(fi) P,(f,) At (f) +-j Pn(f) j=1, ...,J (3)

where the array output x(t) is divided into K subintervals of duration AT snapshots.

It is asserted that it is possible to lump the signal subspaces at different frequencies to

produce a single signal subspace and still be able to extrapolate the number of sources

and angles of arrival. This can be done using a transformation matrix T(fj).

T(f) A(ff) = A(fo) j =1, ...,J (4)

However, the construction of T(fj) requires a knowledge of the unknown angles of

arrival. Wang and Kaveh speculate that a knowledge of the neighborhoods of these

angles is enough as a preliminary estimate. In Effect, coherent minimum Akaike

Information Criteria is used to estimate the number of wide-band sources d where d is

chosen to minimize the function
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[maximum of the likelihood function 1
og of the observation obtained 1

AICE(d) = -2 log| by changing the d free parameters + 2d

in the pre specified model

1
=K (M-d)log(a) + d(2M-d). (5)

The peak positions of the spatial spectrum are then estimated using MUSIC

A 1 1
NO) = A t (fo)EAn JA(fo) (6)

where tn is the estimated noise eigenvector and En is its complex conjugate noise

eigenvector. Those angles that yield peak positions are the angles of arrival. 11
Although CSS spatial-spectrum estimation is effective, as bandwidths of various sources

increase and their locations deviate further from focus points, asymptotic peak bias can

increase. Also, the focused spatial/temporal covariance matrix that is used in BASS-

ALE is a generalization of the focused matrix used in CSS. The principle difference in i
the two approaches is source representation. For these reasons, the "Broad-Band

Signals-Subspace Spatial-Spectrum (BASS-ALE) Estimation" by Buckley and Griffiths

has been adopted in this research.

5.3.1 ARCHITECTURE FOR "BROAD-BAND SIGNAL-SUBSPACE SPATIAL- I
SPECTRAL (BASS-ALE) ESTIMATION." ALGORITHM I

The approach used by Buckley and Griffiths [1] is termed broad-band signal-

subspace spatial-spectral (BASS-ALE) estimation. BASS-ALE estimators employ the 3
eigenstructure of a broad-band data covariance matrix and broad-band source models.

This signal approach is justified by identifying the low-rank character of broad-band I
source observations, thereby demonstrating the possible existence of signal and noise-
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only subspaces. A general model of a source's location vector as viewed by an array of

M sensors is represented as

= [a1,(co), a2(co), ... , aM,o(,))]T (7)

where the source is at an angular frequency o and coming from a three dimensional

source 0. However, if the geometry of the array of sensors is restricted to a linear,

equally spaced orientation where the sensor elements are of pure propagation delay and

the sources are considered far-field, then a location vector representation can take the

form of

ae(o ) = K[e-j° ,. ... , ewT',F (8)

where tie= (i-1)t. te = (A/c)sin 0

0 is the azimuth angle measured relative to array broad side

A is the sensor spacing

c is propagation velocity

t. is the propagation delay from the array origin to the ith sensor for the source

location 0.

A location vector is a rank-1 model in that it spans a one-dimensional subspace in the

M-dimensional observation space.

The location vector modeled above is used in the narrow-band spectral analysis.

In broad-band, the angular frequency (o is no longer a constant. Consider the case where

more than one set of (w,0) yields the same constant (o.0, then those pairs have the same

location vector representation. In that sense, the sets are ambiguous. By adding time

delays into the picture, observations can be further separated by angle and can be more

easily distinguished. Thus, in this method, both spatial as well as temporal source

location modeling is required. If L delayed outputs are used, the location vector

becomes ML-dimensional and it has the form of
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ao((o) [1,e " )Td, ..., eJW(L-)TIT 0 a(oCO) (9)
I fL (9

where Td is the temporal sample delay and ® is the Kronecker product. 3

5.3.2 SIGNAL AND NOISE-ONLY SUBSPACES

It is possible to construct a ML-dimensional broad-band spatial/temporal vector I
x(n) by stacking L M-dimensional vectors x(n - lTd); 1 = 0, ..., L-1. The data consists of 3
superimposed sources observed in a medium corrupted with additive noise. Assuming

that the noise spatial/temporal covariance Rn is known, the broad-band data

spatial/temporal covariance matrix is of the form

Rx = R, + qRn (10) 3
where R, is the source only covariance matrix. Let the eigenvalues X, be ordered in 3
descending order and let e, be the corresponding orthonormal eigenvectors. Those k's

with values equal to a are the smallest and help determine the dimension of the space.

2
If, for a given Rx, there are D "significant" eigenvalues (X, > a .), then the effective

dimension of the span of the space is D. Two eigenvector matrices E, and E, can be

defined as such 3
E,=[el, e,,.-., eD] (11)

and

En=[eD I, eD 2,..., eMLI (12) 3
The column spaces of these two matrices are the signal and noise-only subspaces of the

ML-dimensional broad-band observation space. The temporal sample delay Td has to be 3
selected so as to adhere to single-channel Nyquist sampling. For d sources arriving from

locations Ok; k=1, 2, ..., d} and for a given number of sensors M and a number of delay

levels L, it is required that 3
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ML
d <(M + L) (13)

5.3.3 SPATIAL/TEMPORAL NOISE DECORRELATING

Assuming that the general R. covariance matrix characterized by (4) is known,

then it can be rewritten as
R =R112R R"1/ 2

R=R 1 RR'1X n x n

1/2 /2. -1/2 2 1/2
Rx=IR n1R. R/2+ afnIKu] RL

Rx= Rs + 42IKL (14)

where "S" denotes decorrelated. Some of the sources are altered by this transformation

and the location vector now becomes

ae(o) = R / 2a0(.o) (15)

The effective source dimension is now determined from the source sample covariance

matrix constructed with the above mentioned location vectors.

5.3.4 THE BASIC BASS-ALE ESTIMATOR

Consider a spatial/temporal covariance matrix that has been estimated and that

its dimension D has also been estimated. In narrow-band, a spectrum is estimated, for

each location 0 of interest, by comparison of the modulus squared of the scalar

projection of the rank-1 location vector model onto one of the subspaces spanned by the

eigenvectors of the covariance matrix. In broad-band however, a location vector-based

estimator is suggested in which for each location 0, projections of vectors in the set of
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location vectors {ae((o)} are simply computed and combined. The location vector

estimator is I
Nf

P(8) = I a( n2 (16) m
where Nf controls the sample density of the location vector set. Increasing Nf reduces

sensitivity to source spectral extent. Good results can be obtained with small Nf.

5.3.5 BROAD-BAND COVARIANCE MATRIX ESTIMATION m

Estimating R, in the time domain can be directly derived from the array broad-

band snapshot vectors. Let the set of K-dimensional independent broad-band snapshot m

vectors I XT(nTd); n = 1, 2, ..., Nt} be the available data where Nt implies total.

Furthermore, let

x(nTd) = [XT(nTd), XT([n-l]Td), ..., XT([n-L+1]Td)]T (17)

be a KL-dimensional observation. Obviously, we can form sample covariance matrices
as

as L Nt/L

R = - nIx(nTd)xt(nTd) (18)

Equation (12) is the average taken over independent vectors.

5.3.6 SIGNAL-SUBSPACE ORDER ESTIMATION

The covariance matrix is computed from broad-band spatial/temporal data I
corrupted with noise interference. R, characterized in Equation (4) is rank-deficient and

to find its dimension, the Akaike Information Criteria (AICE) is used.

For proposed dimension d, the total number of signal-subspace parameters to be 3
estimated is

D(2ML - D) + 1. (19) I
Using a source representation subspace model, let
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R = Ri R' R- ' + anIKL] 1 (20)

where R. = VPSVt and V is the ML-dimensional matrix whose columns are the source

representation subspace basis vectors. The log-likelihood function is given by

L(D) = (J2 -+ I)N(ML - D)ln a(21a)

where
ML

1 1 A

ao =-ML - D(21b)
i=D+l

ML I/(ML -D)

go= (21c)

A

and the Ai are the decreasing eigenvalues offt,. With (18), (20a-20c), select the signal
A

subspace dimension D as the D that minimizes

AICE(D) = (J2 - J+ 1)N(ML - D)ln (o) + D(2ML -D). (22)

A hierarchial structure of the method involved in Broad-Band Signal-Subspace Spatial-

Spectrum (BASS-ALE) Estimation is shown in Figure 5.1. First, the covariance matrix of

the collected data has to be estimated. Then the eigenvalues are computed using the
Householder and QR methods. From the estimated eigenvalues, an estimation of the

signal-subspace dimension D can be calculated according to the steps outlined above.

Once the dimension of the system is known, the signal and noise-only eigenvectors can

be constructed. The power method is used to find the desired locations 0 using the

location vector-based estimator ae().
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Figure 5.1 Procedural diagram showing the different units involved in the I
Broad-Band Signal-Subspace Spatial-Spectrum (BASS-ALE) Estimation.
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5.4 ARCHITECTURE FOR BASS-ALE ALGORITHM

First of all the data need to be collected by the sensors to compute the covariance

matrix . The data output from eight sensors is converted to the digital domain and fed

to a pure propagation delay array in a parallel and pipelined fashion. The delay array is

implemented using RAM for each sensor output below.

Data from Sensors

AD ADAID All) AID AID

D11 Dt2D1 D14 D15 D16 D17 D18

123 64

As in Equation (18), the data gathered in the delay array is collected once every eight

cycles. In other words, the data is collected every time the array is filled with new

vectors. The gathered data is stacked to construct a 64-element data vector required for

the computation of the covariance matrix.

Computation of the covariance matrix involves a multiplication of 64 element vector

with its 64 element complex conjugate transpose (64 element row) producing a 64x64

matrix for each set of data. Since the covariance matrix is symmetric, one way to reduce
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the required number of computations is to compute only the lower triangular matrix.

Figure 5.2 shows how a vector X(nTdL) (see equation 17) is multiplied by its conjugate I
transpose to obtain the lower triangular matrix. To compute the lower triangular matrix

in parallel, it would require a total of 2080 PEs. On the other hand, if computation of one

column at a time is performed in parallel, then 64 PEs can be used. Moreover, for every

succeeding column, one of the PEs will be disabled; the last column to be computed will

ust only a single PE. This minimizes the amount of hardware used by a ratio of 2080:64 I
or 32.5:1, with the increase in computation time. The procedure's inefficiency increases

with the increasing number of disabled PEs. Notice also that in each column, there is a
Hcommon operand that is shared by all the elements of that column such as XI in column

I in Figure 5.2. These common operands are supplied as the broadcast elements. The

second operand will be common in the row; e.g. x14 in row 64 in Figure 5.2.

5.4.1 BROAD-BAND COVARIANCE MATRIX ESTIMATION ARCHITECTURE

USING 64 PROCESSING ELEMENTS

As the speeds required by the processing elements and the movement of data in

the delay array are not the same, two clock frequencies are suggested. One frequency, I

adhering to Nyquist sampling, for collecting the data in the delay array, and another

frequency to drive the processing elements. Figure 5.3 shows an architecture for

computation of covariance matrix using 64 PEs. Data output from eight sensors

propagate through a delay array, eight vectors deep. Once every eight cycles, the data is

collected from the delay array to form a 64-element vector. An array of 64 PEs can be I
used to compute the lower triangular covariance matrix as shown in Figure 5.3. This

array receives one set of operands from the sensors and the register file receives its

conjugate transpose of that set of 64 elements. This vector is stored in the 64 PEs one

element per PE and, simultaneously, the conjugate transpose of the vector is stored in

the 64 registers file, one element per register. In this approach 64 multiplications will be I
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1 2 3 * 64

Ix I lxi 1 X'" x64 "1 T x 1" I
Ix_,l 2 Xx," xIx 21
I I 3 X3x,"~ XIXH X"3I I -. - • X62 2;

I I - • • . • [ H H

* X63X621 X63X63
I X64  64 X6XIH X64XH x6xI H X6X 6 H X4X6 3H x4xH

Figure 5.2 The product of a 64-element vector x by its conjugate transpose vector XH
resulting in a lower triangular matrix.
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64 Register File

SREG I

IREG 2 64

6-bit cone

I 6x647- 6! 6

REG 64I

Store array elements in PEs

111 .......... iJ,0111, , ........I
P P•00111 ....... ,

enable lines

i
i

Figure 5.3 64 PE Architecture to produce a lower diagonal matrix without superimposed columns. 3

i
I

100 i



performed by 64 PEs in parallel. First operand is already stored in each PE and the

second operand which is common for all is broadcasted from the register file. Again, the

product is performed by producing one column of the covariance matrix at a time. All

the enabled PEs work in parallel to compute that column. The 6-bit counter produces a

sequence that is decoded (decoder not shown) to broadcast one operand from one of the

registers at a time. The same counter sequence is used to access the micro code in the

ROM. The micro code controls the operations of the PEs; it disables the PEs as needed.

A total of 64 cycles are required to compute one frame of the covariance matrix.

Moreover, all PEs are not used all the time. One approach to improve the computation

time efficient use of PEs is developped and is explained in the next section.

5.4.2 BROAD-BAND COVARIANCE MATRIX ESTIMATION ARCHITECTURE

USING 64 PROCESSING ELEMENTS (AN OVERLAPPED APPROACH)

In this approach, data can be overlapped by merging two non-full columns; e.g.

column 2 and column 64 and is shown in Figure 5.4. This merging operation eliminates

inefficient use of PEs. When two columns are incorporated, two operands are shared by

each column; e.g. xY6 and x3 in column 3 in Figure 5.4. When two columns are merged,

two operands will be present; e.g. x2 and x13 in row 2 of Figure 5.4. Therefore, every PE

has at most two constants assigned to its first operand and a broadcast element for its

second operand. Figure 5.5 shows a hardware configuration suitable to compute a lower

triangular matrix with superimposed columns as previously discussed.

There are 64 PEs arranged as a linear array. On the bottom part of the circuit,

three sets of registers are utilized; the ,eft set consists of 32 registers (Set #1), the middle

set consists of 31 registeres (Set #2), and the right set consists of only one register (Set

#3). These three sets, as well as the set of 64 registers (top of Figure 5.5), get the data

from a queue structure (the queue itself stores data output from the delay array and the
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0 0 0 0 0 0
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Figure 5.4 The product of a 64-element vector x by its conjugate transpose vector XH

resulting in a lower triangular matrix where its columrns overlap.
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delay array in turn stores the data output from eight sensor elements array). Set #1 is

connected to all of the processing elements. Set #2 is connected to the first 31 PEs and n

Set #3 is connected to the rest of the PEs starting from PE 33. There are two sets of 31

multiplexers. One set for the first operand and the second set for the second operand.

Each PE has at the most two different values as a first operand such as x, and x,4 for row

1 and x, and x13 for row 2. By the same contrast, each column receives at the most two
H FI H H

different values as broadcast elements such as X" and Y6' for column 2 and x and X 3 for
i

column 3. The multiplexors are controlled by a micro coded ROM (31 bits wide) that is

addressed by a six-bit counter. Address lines AO-A4 of the counter output are decoded

and the 32 output lines of the decoder are used to control set #1, set #2 and set #3

register enable-output control lines. Using this method, one product X(nTdL)XH(nTdL) is

achieved in 33 time steps. Since 4800 sensor sample readings are collected, this will i
require calculation of 600 such products. If the operating frequency is 100 kilohertz, it

takes 80 microseconds (ps) to fill the delay array. It takes the architecture 1.28

milliseconds (ms) to finish its computations. As a consequence, a storage place to hold j
the arriving data from the sensors is required. For proper operation of the system, a

queue structure, 454 64-element deep, can be used to balance the speeds of the sensors I
and the architecture.

Figure 5.6 shows the flow of the signals from the sensors, to the delay array, to

the queue and multiplication unit, then to the accumulate unit. Previously calculated

values already stored in memory are added to the column output of the multiplication

unit. The multiplication and accumulation processes are repeated 33 times to produce i
one frame of the covariance matrix. A total of 600 frames are needed to produce the

required matrix. The matrix elements are then divided by the number of iteration, here

600, to produce the covariance matrix. The divider unit is not shown.

I
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Data from Sensors

1 2 3 63 64

454 Deep
QUEUE

Multiplication unit to form

X (n Td L) X (n Td L)

Repeat 600 times

Covarinace matrix

Figure 5.6 Flowchart of data from the delay array to the 64 PE multipilication unit.
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Two architectures each using 64 Processing Elements (PE) are considered. The

first approach requires less hardware, is simple to realize, but uses "_7s inefficiently. The n

second overlapped approach requires a queue, multiplexers, and various sets of I
registers. The overlapped approach with its complex design reduces computation time.

Nevertheless, it is still possible to compute the covariance matrix in a more elegant and

efficient way by cutting down the number of processing elements used and increasing

the number of computations. A new architecture is developed and is explained in the

following section.

5.4.3.1 BROAD-BAND COVARIANCE MATRIX ESTIMATION ARCHITECTURE

USING EIGHT PROCESSING ELEMENTS U
A third approach of computing 64x64 covariance matrix is presented and uses

eight processing elements. As described in previous sections, the elements of the delay

array are stacked to create the 64-element data vector X(nTdL). To get more insight

about the multiplication process of that vector with its conjugate transpose, a different

representation of the data is adopted. The representation is demonstrated in Figure 5.7. m

Figure 5.7(a) illustrates how eight sub vectors, eight elements each, are stacked together

to form a 64-element vector. The computation of the covariance matrix requires that

this 64-element data vector (a column) be multiplied with its counterpart, the 64-

element conjugate transpose data vector. The multiplication process creates a Hermitian

matrix. Figure 5.7(b) depicts that lower triangular matrix in the form of sub vector 3
multiplications. On account of creating a lower triangular matrix, 36 sub vector I
multiplications are required. Each of t! e sub vector multiplication produces an 8x8

sub matrix. One of these sub vector multiplications, namely R(7) (7), is taken as an 3
example to illustrate the process. The resulting 8x8 sub matrix is shown in the zoom

window. The complete lower triangular matrix is portrayed in Figure 5.7(c) where a I
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(C)

Figure 5.7 Vector X(nTdL) multiplication
(a) Vector X(nTdL) represented in a stack of 8 sub vectors.
(b) Product of sub vectors forming 36 sub matrices.
(c) Expansion of (b) to show the 8x8 sub matrices.
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subscript denotes the position of that data element column-wise in the delay array and

the index in parenthesis denotes the level of delay (or the row position). To distinguish i
between some of the sub vector multiplications, the results are portrayed with different u
highlights. One example is the sub-block represented in bold. Each row of that 8x8 sub

matrix shares one of the operands as a constant; e.g., x1(7) in the first row, x2(7) in the

second row and so on. Obviously, these values are the elements of the 7th delay row

and they are broadcasted to be multiplied with the elements of the 8th delay row. This i
configuration has a close resemblance to the first approach design using 64 PEs. To

simplify the computation of the covariance matrix, all the sub vectors will be computed

in full including those that are on the diagonal. As a result, more data is generated than i
is desired, especially the ones above the diagonal. Indeed, the resulting matrix looks like

descending stairs. i

The addition of those extra elements to the matrix establishes a uniform algorithm

where all the sub vectors can be multiplied in exactly the same mar ner without

exceptions. In other words, one architecture can be used to compute the 8x8 sub

matrices one at a time. I
5.4.3.2 HARDWARE DESIGN

A block diagram of eight PEs that are nEeded to perform the task is shown in

Figure 5.8. The hardware unit computes one of the sub matrices at a time. The broadcast 3
data is stored in the registers and the second operand vector is stored in the PEs. An

algorithm to compute the needed 36 sub vector multiplications is provided in the

flowchart illustrated in Figure 5.9. Three counters are needed:

Counter J • Indexes the columns (A column refers to the different sub vectors of

Figure 5.7(b))

1
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Eight Register File

I 3-bit counter

2 3

ADcc
roDec8 3 xZ8

Store elements in PEs PEDecoder

Figure 5.8 Block diagram overview of an 8 PE Architecture to compute a lower diagonal matrix.
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Figure 5.9 Flowchart illustrating the use of 3 counters to multiply 36 sub matrices forming
a lower triangular matrix.
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Counter I Indexes the rows (A row refers to the different sub vectors of Figure

5.7(b))

Counter K: Indexes the rows within a sub matrix multiplication process.

The process proceeds as follows:

Set counter J = 7

Set Counter I = J = 7

All PEs compute in parallel

(a) One operand vector is stored in PEs and is specified by counter J

(b) Second operand vector is broadcasted (one element at a time specified by K)

from a register file and is specified by I.

(c) Perform multiplication of one row in parallel

(d) Products are added to previously stored values.

Decrement the counter I until it reaches 0

Decrement the counter J and set I = J until counter J reaches 0

Repeat for 600 iterations.

Figure 5.10 shows the needed architecture to perform the operations explained above. In

this design, the following hardware parts are used:

Sixteen Dua'-Port Rams (DPR) 8-words deep

Four 2 to I Multiplexors

Four 3-bit Counters

One 9-bit Counter

Eight Registers, and

Eight Processing Elements.

Data output from eight sensors are fed and written into eight dual-port RAMs. At any

one time, one level of DPRs will be in write mode storing newly read data from the
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sensors' output while the second level of DPRs will be in read mode where previously

stored information is now being used to compute one vector product X(nTdL) with its

conjugate transpose. Addresses needed by the DPRs are provided by counter I, counter

J and a 3-bit counter which is controlled by a 9-bit counter. Two multiplexors,

controlled by S (or S), direct the needed address to the DPRs. If the DPRs are in write

mode, the 3-bit address is selected, otherwise, address I and address J are selected. In

read mode, the data addressed by counter I is supplied from each DPR to the respective

register, while simultaneously the data addressed by counter J is supplied from each of

the same DPRs to the respective processing element. Counter K is initialized to the

value of zero and then is used to broadcast the output of one of the registers, one at a

time, to all of the eight processing elements. Each PE then multiplies that register

output data with the value already stored in its internal register (an element of vector J).

The multiplication result is added to previously computed values that are stored in

memory at an address pointed to by counters I, J and K. Counter K loops through its

range (0-M7) to construct an 8x8 sub matrix. Counters I and J loop through their range

(7--+0) to compute the 36 sub matrices. At the end of three loops (I, J, K), the assignment

of the two levels of DPRs are switched and the operations performed by the PEs are

repeated for the newly available data. The process is repeated 600 times to build the

required matrix. The covariance matrix is formed by collecting the matrix and dividing

its elements by 600.

Figure 5.11 shows the control lines for each Dual Port RAM (DPR). Since the

architecture is designed to perform one sub matrix at a time, it is possible to detect

when the PEs finish the computations of that sub matrix. At that time counter K reaches

its highest state (K= 7 10=lllb) . If at that time counter J is indexing the last column

(J=000b), the computation of the lower triangular matrix is complete. This logical

function is implemented using two AND gates and one NAND gate. The output of the

AND gate is used as a clock input to the D flip-flop. The value stored in the flip-flop is
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Figure 5. 11 Dual Port RAM control block.I
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used to select one level of the DPRs; either the top level or the bottom level, while the

I inverted output S of the flip-flop is used to select the second level of the DPRs. The

selection is meant to be used as a read/write control. Notice also, that there is an

Ienable/disable control on a DPR. The only time that the chip should be enabled is when

it is time to read information for processing (S=I), or when it is time to write the newly

read sensor output data (S=0 write mode). An OR gate is used to enable the DPRs.

I When a DPR is in read mode, it receives address I and address J. On the other hand,

when the DPR is in write mode, it receives its only address from a 3-bit counter

Icontrolled by the 9-bit counter (see Figure 5.10).

The internal structure of each processing element is shown in Figure 5.12. As illustrated,

the following hardware elements are needed:

I Four Multipliers

Four Adders

IThree Registers

One of the values stored in the external registers is broadcasted to all the PEs. Complex

multiplication of the value with the data stored in the internal register is performed.

IFour multipliers are needed due to the complex nature of the data. It is also desirable to

use as many multipliers to generate parallelism to enhance speed of the system. Two

adders are used to add the results of the complex multiplication; one adder for the real

part and another for the imaginary part. Previously calculated data that has been stored

in memory, is retrieved and fed through two sets of registers before it is added to the

newly computed complex data. It is possible to eliminate the latter two registers to

minimize the number of hardware needed in each PE provided that all the propagation

I delays have been accounted for in the multiplier then the adder stages.
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CONCLUSION

In this chapter BASS-ALE algorithm has been simplified and converted into I
parallel/pipelined algorithm. First part of this algorithm requires computation of

covariance matrix. Three architectures are proposed and an architecture with 8 PEs has

been selected for detailed design. Design for the next module is in progress and other 3
parts are being designed separately.

i
I
i
I
I
i
I

i
I
!
I
i
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Figure 5.12 Detailed internal structure of a Processing Element.
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Chapter 6

DOA ESTIMATION FOR BROADBAND SOURCES USING A BILINEAR I
TRANSFORMATION MATRIX APPROACH

6.1 INTRODUCTION 3
The estimation of angle of arrivals of multiple broadband sources has been

carried out in a variety of ways over the past few years. The conventional

approach is to form a generalized correlator [311 to estimate the Time Difference 3
Of Arrival (TDOA) of the signal at the sensors. The so called maximum

likelihood based methods [32-34] require knowledge of the source and noiseI

spectra and are computationally expensive. The parameter estimation based

methods [35-371 assume Auto-Regressive Moving Average (ARMA) models for

the received signals and the estimated ARMA parameters are utilized for the I
TDOA calculations. Such model based methods have computational complexity

and their effectiveness depends upon the approppriateness of the model chosen n

to represent the unknown broadband signals. Another way is to extend the ideas

from the narrowband case [381 and use a eigendecomposition approach for the

estimation. This approach involves the incoherent combination of the 3
eigenvectors of the estimated spectral density matrices at each frequency bin to

calculate the TDOAs. One other way [39,40] is to use the initial estimates of the a
angles oi arrival to transform the eigenspaces at different frequency bins and 3
generate a single coherent subspace which is eigendecomposed to give more

accurate estimates. Well separated angles can be estimated by focusing at I
different angles at each time and iterating to obtain the accurate results.

Shaw and Kumaresan [261, proposed an algorithm for broadband DOA

estimation using a simple bilinear transformation matrix. An approximation 3
8 3



resulting from a dense and equally spaced array structure is used to combine the

individual narrowband frequency matrices for coherent processing. When

compared to other coherent approaches, this algorithm has the advantages of

being non-iterative and does not require any initial estimates of the angles of

arrival and all angles are computed from a single step of coherent subspace

calculations. Hence it was found to be a suitable algorithm for computation of

DOA using dedicated hardware. The algorithm has been described in the

following section.

6.1.1 Problem Formulation

Consider a linear array with 8 sensors which are spacedat equal distances.

The incoming signal is assumed to be composed of d plane waves emitted from d

sources (d < 8), with an overlapping bandwidth of B Hz. The signal from the kth

sensor is expressed as

d

rk (t) - si(t - (k -1) - sinOi) + Ilk (t) (6.1)
i= I

T T
2 2 ~

where si(.) is the signal radiated by the ith source, A is the separation between the

sensors, c is the propagation velocity of the signal wavefront, O1 is the angle that

the ith wavefront makes with the line of array and nlk is the additive noise at the

ith sensor.

Performing the FFT and representing the two sides by their Fourier

coeffficents
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Rk (W!) e-jit (k -1)'A sinO, Si (w, ) + Nk (W1 ) (6.2)
i=1

with wV = 2n ,lI+tf, where wzV and w,.. are the frequencies which span

the bandwidth B. 3
I

Writing in the matrix notation 3
R(wI) = A(wt ) S(zol ) + N(w) (6.3)

where these matrices are composed of the column vectors I
R(wt ) = [r1(wt ) ... r8(wt )IT (6.4a)

N(O ) = [nj(wt ) ... n8(wt )]T (6.4b)

S(w7 ) = [si(w ) ... s,(Zt' )IT (6.4c)

and the matrix A(zv ) is a 8 x d direction finding matrix I
Fe 1 ... jw 1 I

A(zvl ) = ... ... (6.4d)
e-17zvt r, ' e'j~Zwdrt -]

T, =csin 0, (6.4e) I

tj being the TDOA of the ith source. Assuming that the observation time is large i

enough when compared to the correlation time of the processes, the covariance

matrix of the Fourier coefficient vector r(wi ) will approach the spectral density I
matrix 5
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K(wj ) = A(w, )P,(w1 )A"(w, ) + (Y,, Po(wI ) (6.5)

where K(wj), P,(wt ) and P(wl ) are the spectral density matrices of the processes

r, () Sk(.), ni (-) respectively. The noise process is assumed to be independent of the

sources and the noise spectral density matrix except for a multiplicative constant

UPI

The problem now reduces to the estimation of the t1 ' s from the

covariance matrices K(u'1 ) and the noise representations. Then the angles of

arrival can be computed from the Equation (6.4e).

6.1.2 Problem Solution

This particular approach utilizes a bilinear transformation and dense

array approximation to form the transformation matrices. The bilinear

transformation matrix that is used can be synthesised from the coefficients of the

polynomials pk(z) = (l+z)M-k (l-z)k-1, where k =1, 2, ... M-1. M here indicates the

number of sensors that the system is using, which in this case is equal to 8. Hence

the transformation matrix in this case is an 8x8 matrix, the synthesis of which is

shown in the next section.

E(w, ) denotes a diagonal matrix given by

E(wi [ = ... (6.6)

L (1 +e-,7vi r,,)7

Premultiplying A(wi ) by the transformation matrix B and simplifying the

product gives
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I

- 1.. 1 -

BA(w )2 2 j E(w) (6.7)

(j tan--..-) itan--T-2

Assuming that the sensor to sensor separation A is small when compared to the I
wavelengths of the incoming signals, tan- - can be approximated by 2

Now consider an 8x8 diagonal matrix D( IL) whose (kk) th term is given by7VI
dk, =( L7 L;)k-1 (6.8) 1

where Wc =2 7Efc and fc is the midband frequency of the signals. 3
It can be approximated as 3

WI 1cI .
D( )BA(wi ) = ... .. . c E(w,) (6.9)

(wvcr, )7 ... (zvcrd )7_ i
There is a new matrix A(wc ), whose columns are the transformed direction

frequency vectors which are dependant upon Wc rather than w, . The columns of 3
the matrix are linearly independant as long as r i *rk for i *k.

A new transformation matrix is defined as

T(- )=D(- )B (6.10) I
This does not depend upon the arrival angles and can hence be computed

independently of the angles. Using these transformation matrices for each I
I

1..2.3



individual narrowband frequency, all the spectral estimates can now be

combined at the midband frequency in the following manner;

11+nf

G= T (w ) K(w ) TH(w, ) (6.11)
I=Ii

11 +ni

and Gn= Y T (w) Pn (wt) TH(zv) (6.12)
1=11

Then the coherent signal subspace theorem for the matrix pencil (G,G,,) is

used to estimate all the angles of arrivals by computing the maximas of the

measure given by

1
J(O) = 8 (6.13)

1 I ae(wc)ek(wc) 12
k=d + I

where ek(V, ) denotes the generalized eigenvectors of the matrix pencil

(G,G,, ), which correspond to the 8 - d eigenvalues, and a0 (w, ) represents the

new direction frequency matrix.
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6.2 PARALLELIZATION AND MODIFICATION 3
The first objective in the implementation of such signal processing I

algorithms is to modify them in such a way so that the maximum possible

parallelism and pipelining can be achieved which would enable the real time

implementation of the algorithm. The modification of the algorithm outlined in 3
the previous section takes into consideration the various tradeoffs involved in the

ultimate realization of the hardware like the timing and cost considerations

which would make the project viable. 3
A flow chart of the modified algorithm is shown in Figure 6.1(a). Figure

6.1(b) shows the mathematical transformations that the algorithm involves. I
There is a linear array of 8 sensors which are sampled at a rate of 80 samples 3
per sec. A segment of 64 samples is considered which form the single step input

to the next stage of the FFT processors. As shown in Figure 6.1(a) a single I
estimation of the angles of arrival involves the processing of 64 such segments of I
64 samples each. After 64 samples are collected, the next step involves the

transformation of these signals from the time domain to the frequency domain by 3
performing a 64 point FFT. The output is a 33 element vector in the frequency

domain which is representative of the input signal at that sensor. 3
The next block is the calculation of the covariance matrix at each frequency 3

bin. Essentially the covariance matrix consists of the product of the frequency

vector and its Hermetian which is obtained from the corresponding elements in

the FFT output vectors. Hence for the 33 different narrowband frequencies there

are 33 different covariance matrices independant of each other. These matrices

are averaged over the 64 segments before being passed on to the next step in the 3

12d 4
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algorithm which is the projection of the covariance matrices K(wi ) onto the 3
single midband frequency in the spectrum to compute the G matrix.

The computation of the G matrix requires the transformation matrices I

T(w1 ) which are precomputed as shown in the diagram. As seen from 3
Equation(6.8) in the previous section the computation of the matrix involves the

knowledge of the narrowband frequencies in the bandwidth. Given a specific 3
problem such an estimation of the frequency bins is made by splitting the

bandwidth into 32 equal parts and taking the frequencies at the boundary. With

this initial assumption of the narrowband frequencies in the spectrum of the 3
incoming signals the transformation matrices can be computed offline. This is

possible because the matrices are unique for a set of frequencies and are 3
independant of the angles of arrival of the incoming signal. Hence these

invariant matrices can be stored in a ROM for a dedicated architecture and can

be called up whenever they are required during the processing. However an 3
architectural model has been developed to compute the transformation matrices

on line which would enable the system to be more general purpose and allow it

to run scans over different frequency ranges without the initial knowledge of

their frequency components. The computation of the actual transformation I
matrices is outlined below following the principles explained in the previous 3
chapter.

6.2.1 Computation of the Transformation matrices

The transformation matrix is derived as follows: U
Let B be a matrix constructed from the coefficients of the polynomial I

pk(z) (I+Z)k (I -Z)8-k, where k =1, 2, ... 7. K denotes the number of the row of the
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8 x 8 matrix which is formed. In this case the nonsingular matrix has been

computed and is shown below

1 721 35 35 21 7 1
1 5 9 5 -5 -9 -5 -1
1 3 1 -5 -5 1 3 1
1 1 -3 -3 3 3 -1 -1

B=1 -1 -33 3 -3 -1 1 .4

1 -3 1 5 -5-1 3-1
1 -59 -5 -5 9 -5 1

-1-721 -35 35 -21 7 -Li

From this B matrix the transformation matrix can be computed according

to Equation (6.10). For the matrix D( w2 , the (kk) th term is given by

2u )k-1

Let p denote the constant term such that

2WcI P- w

The transformation matrix can now be written as shown in Equation (6.15)

The matrix T can thus be computed and is stored in a ROM and is

Iretrieved by each processor. The next precomputation block is the calculation of

I the G,, matrix which is the estimate of the noise spectral density that is expected

to be present in the signal. The algorithm requires a previous knowledge of the

I noise in the system which is expressed in terms of the P,, matrices at each

frequency bin. The procedure for calculating involves two matrix multiplications

I aj d is similar to the computation of the G matrix from the covariance matrices.

The calculations are performed 33 times, once for each frequency component and

are then averaged at the midband frequency.

I
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7p2 21p3 35p4 35p 5 21p 6  7p7  p 1
p 5p 2 9p 3 5p -5p5 _9p 6 _5p7 .p8
p 3p 2 _.p 3 _p -5p 5  _p6 3p 7  p8

p -3p p 3-5p -5p-' -p 6  3 p7  -p8
p -3p _3 p 3p 3p 6 -p 7  -p

p( -p2=-_p2 3p 4  3p -3p 6  -p7

p ~ .3 p3  4 5 .7 8 (615

p .32 p3 5 p4 .5p 5  -p 6  3p 7  -p

P .5p 2  9p 3 .5p 4 .5p 5  9p 6 .5p 7  p 8  1
p -7p 2 21p 3 -35p4 35p 5 -21p 6  7p 7  _p8

The equation governing this transformation is shown below. 3
11+nf

Gn= J1T (w, ) Pn,,(W) T"(wi) (6.16) I
1=11

The matrix G,, is then stored in the ROM and accessed at the time of the I
Cholesky decomposition. 3
6.2.2 Computation of G !

The G matrix which is the combination at the midband frequency of all the

individual covariance matrices of different narrowband components requires the I
projection of these matrices by the transformation matrices and involves two 3
matrix multiplications as shown in the equation below.

11i+nfI

G= T (we) K(w ) T"(w) (6.17)

I=11 I



The process goes through 33 iterations as shown in the flowchart. Each

loop involves two matrix multiplications which are done sequentially, because

the input to the second operation is the output from the first. However

parallelism has been achieved inside each operation as it is performed in one

cycle. The computation of the G matrix gives the matrix pencil (G, G,, ) of which

G,, has been precomputed.

6. 2.3 Cholesky decomposition

The further processing of the signal requires that it be organised into a

standard form so that certain standard operations of matrix algebra like the

eigendecomposition can be performed. The algebraic manipulations which are

performed to achieve the objective are described below.

G,, and G are two matrices which need to be put in the standard form

such that

GX = XG,,X (6.18)

where X = the eigenvalues of G

X = the eigenvector matrix of G,, and G

Decomposing G,, into

G, = L LT (6.19)

and substituting G,, in the equation and multiplying both sides by L-1 gives

L-1G L-T. LTX = X L- L LTX

Defining L-1 G LT = H and LT X = Y (6.20)
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I
The standard form required for eigendecomposition can be written as 3

HY= XY (6.21)

The decomposition G,, = L LT is obtained by doing the Cholesky decomposition

which is the next step in the algorithm as shown in the flowchart. 3
The flowchart of the Cholesky decomposition is shown in Figure 6.2. The 3

objective of reducing to a lower triangular matrix is achieved by computing the

elements below the diagonal according to the equation 3
i-i

aki - aijaki

aka (6.22)

The diagonal elements are however computed by the form'ila

k-I

akk= - akj (6.23)

Once the lower triangular matrix L has been computed the transpose LT 3
can be obtained.. The next step is to obtain the two matrices H and Y. This part

needs the calculation of the inverse of the lower triangular matrix L as is seen I
from Equation(6.20). This computation is both time consuming and complex

especially for real time applications. The ultimate objective is not to calculate the 3
inverse and to circumvent this requirement, a simple algebraic manipulation is 3
described below:

Assuming a matrix W such that

LW=G (6.24) 1
we have 3
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I

W =L-IG

Taking the transpose and premultiplying both sides of Equation (6.24) by L-1

gives

L-1W =L-1 (L-1G)T 

= L-1 GT ( L. )T 3
= L-1 G ( L-1 )T (as G is Hermitian) 3
=H H

Hence 3
LH = WT (6.25)

Considering the two Equations (6.24) and (6.25) it can be seen that the

problem of computing the inverse is now reduced to the computation of the H U
matrix by two forward substitution operations. First the matrix W is computed 3
from the Equation (6.24) as the other two matrices are known. Then it is

transposed, which is a simple routing exercise in the architecture and use the

result in Equation (6.25) to compute the H matrix.The computation of Y also

follows the same procedure. The resultant matrices can now be treated in the I
same manner as the narrowband case to compute the angles of arrival. First the

Householders and QR transformations are performed to reduce the dense matrix

into a diagonal one and then the power method is used to compute the angles of 3
arrival. The description of these methods is given in the previous chapters

dealing with the narrowband case. U
3
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6.3 HARDWARE IMPLEMENTATION

In the hardware implementation of the proposed algorithm it is necessary

to consider the tradeoffs between the timing requirements and the number of

processors in each stage. Though parallelization and pipelining of most tasks in

the process is possible this would require a large number of processing elements

which are not really necessary as far as the timing requirements are concerned

because the processing speed is going to be determined by the sampling rate at

the sensors which is not very high.

The overall block diagram of the architecture is shown in Figure 6.3. The

first part shows the sensors and the buffering stage. The input to the FFT

processors is a 64 element vector. Hence a buffering stage is provided to store

and accumulate one segment of 64 samples. The buffer has a control mechanism

to coordinate data flow from the FFT processors. The data is transferred to all the

processors simultaneously a sample at a time.

The next stage is that of the FFT processors. In this algorithm the

computation of the angles of arrival is done in the frequency domain so the first

operation that is performed on the incoming data is the Fourier transform. The

DSP 56000 chip is used to calculate the FFT for the data from each sensor. From

the specifications of the chip it has been calculated that it can perform the 64

point FFT in about 120 ps, which is acceptable for this algorithm. The output

from the FFT processors is a 64 element vector in the frequency domain. But the

components of the vector are symmetrical and hence for computatior urposes

only one side of the spectral elements is considered. This reduces to a vector of

33 elements which is used to compute the covariance matrices. The architecture

developed for the covariance matrix attempts to keep the symmetry of using 8

S15
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processors for each stage. A set of FIFO buffers is used between each set of 3
processors to store the results from the FFT operation. A clock signal as shown in

the figure is used to retrieve the data from the buffers in a synchronous mode

which is necessary for the input to the covariance matrix processors.

6.3.1 Covariance matrix computation I
The computation of the covariance matrix at each frequency bin essentially

involves the multiplication of two 8 element vectors. These correspond to the 3
frequency component at each of the sensors and are indicative of the change in

the observed signal between the sensors. Figure 6.4 shows a more detailed I
diagram of the architecture for the computation of the covariance matrix. As 3
shown in Figure 6.4 this stage consists of 8 processors each of which is used to

compute one column of the covariance matrix. The flowchart in Figure 6.5 shows 3
the various steps involved in the calculation of the 33 matrices. Figure 6.6 shows

a more detailed diagram of the processors in the covariance stage. I
X 1 X2 'X3 'X4 X5 'X6 X7 Ks

$ I
RAMm 

im mm 
m

Computafion of G

Figure 6.4 - Architecture for computation of covariance matrices m
m
I
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Basically the computation of the covariance matrix involves the 3
multiplication of a vector with its transpose resulting in a square matrix whose

." 
1

iI

MLT MLT MLT MLT MLT MLT MLT MLT UniControl
S t

SEGMENT
COUNTER

ADDi RADDRESS

DADD ADD ADD ADD ADD ADD ADD COUNTER

~I

DATA LATCHES 5
II

RAM ........

I
Figure 6.6 Processing Element for covariance matrix stage

dimensions are the size of the vector. In this case the number of elements in the 3
vector is 8, which gives a 8x8 covariance matrix. This also permits the mapping of

the computation process in an array of 8 processors, each of which calculates one I
column of the resultant matrix. Each column is formed by the product of that 3
particular element with the whole vector. For example the third column (which is

computed by the third PE ), is formed by the product of the third element with 3
the entire column. Hence the inputs to the third processor will be the third
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element (X) and the vector (Y1 - Y8 ). These elements are obtained from the FIFO

buffers in which the output from the FF1 processors are stored. The loading of

these elements can be achieved in parallel with a multiplexed bus which will

route the data from a buffer to a single PE ( X input) and a broadcast bus which

will put the data to all the processors ( Y1 - Y8 inputs). As seen from Figure 6.6,

once the data is latched in to the buffers inside the PE, it is passed on to a

complex multiplier. The two multiplier inputs are the X value and the

corresponding Y value. Once the product is computed, it is passed on to an

adder, which adds the incoming value to one that has been computed from the

previous segment. This previous value is stored in a local RAM as shown in

Figure 6.6 and can be retrieved as follows.

The control unit inside the PE basically has the function of supplying the

various signals which would enable the correct data to be retrieved from the local

RAM during the arithmetic operations. An address counter which runs from 1 to

33 will generate the address which is needed to retrieve the proper vector from

the RAM. The decoder takes the signal from the counter and enables a particular

row which contains the vector corresponding to that frequency. The particular

vector is put on the data latches from where it goes to the adder. This completes

the read cycle from the memory. Once the addition is done, the data is now

written back into the latch overwriting the data which had been previously

stored. A write cycle is executed and the acccumulated result is written back into

the same memory cells. The address is held valid till the write operation is

completed. The counter is now incremented which takes the whole operation into

the next cycle. Once the counter completes 33 cycles it is reset and a pulse is sent

to the segment counter which is incremented. The segment counter is set to run

from 1 to 64 and is used to indicate the end of a framne.
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The memory is organized into an array of 8 x 33 cells. Earl cei is capable u
of storing one element of the vector. The word length is such that 8 elements can

be accessed in one cycle on parallel data buses. The addressp ,A, i trom 0 - 32 for 3
the 33 vectors that are stored. Once the computations have been performed for

one frame they are averaged, and passed on for the computation of G. U
6.3.2 Computation of G 3

The computation of the G matrix reduces the 33 frequency matrices into

one single matrix. An important aspect to note is that this computation is

required to be done only once every frame, i.e. every 64 segments. The I
architecture is very similar to the one used for the covariance matrix computation

except that the operations are now matrix based instead of being vector based.

This calls for a slight change in the memory requirements and the operations in 3
the computation. As shown in Figure 6.3 there is an array of 8 processors each

one of which is used to compute one column of the resultant matrix. I

The formation of the G matrix involves two matrix multiplications, which 3
are used to project the 33 frequency matrices into a single combined matrix at the

central frequency according to the equation below. I

G = T(wl) K(wl ) TH(w1) I

As the matrices are 8x8, the operations are mapped in an 8 processor 3
array as shown in Figure 6.3. Each processor computes one column of the

resultant matrix. The data routing is a bit more complex this time because the U
operands are matrices which need to be loaded into each processor. To simplify 3
this problem the architecture is configured in such a way that only one column

needs to be unique to each processsor. In this case it would be the ith column of 3
142 3



I
I

the TH(w/) matrix going to the ith processing element. The rest of the data (i.e.

I the T(wl ) and the K(wl ) matrices are broadcast simultaneously to all the

processors during the computation. The T(wl) and the TH(wI) matrices can be

precomputed, as they are independant of the angles of arrival and are dependant

I only on the frequency spectrum, which is known a priori. Hence they can be

stored in an external ROM and retrieved whenever required. The computation of

I a column of G at each processor can be done by two consecutive multiplications

of an 8x8 matrix with an 8x1 vector each of which results in an 8x1 column

vector. The first operation is multiplying the covariance matrix K(wl ) to the ith

column of the TH(wI) matrix, which gives the ith column of the K(wj) TH(wI)

matrix. Next the T(w1 ) matrix is multiplied to the previous result which gives the

I ith column of the G matrix at the ith processor.

A flowchart of the process of computation of the G matrix is shown in

Figure 6.7. The algorithm has been parallelized so that the processor can execute

nonsequential operations at the same time. The first operation is the loading of

the two input vectors, which are done simultaneously. The next set of operations

involve the parallel multiplication of the vector elements. At the same time the

next row of the K(w 1 ) matrix can be loaded into the input latch. Also from the

second loop onwards the results can be accumulated. Next the eight elements are

added to give the innerproduct which is one element of the column. This repeats

for eight loops to compute all the elements of the 8x1 column.

Similarly the second matrix multiplication is performed except that this

time the X input is the resulting column of the first multiplication and the Y input

is the row of the T(wg) matrix. This operation is repeated eight times to compute

the G matrix for the first frequency bin. The process then runs through 33
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Figure 6.7 Flowchart for the computation of G matrix
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iterations for the 33 frequencies. The values are averaged and the final G matrix

is calculated.

The internal block diagram of the PE used for the calculation of the G

matrix is shown in Figure 6.8. The X input is the ith column vector of TH(wI).

For the fourth processor the input would consist of the fourth column of the

TH(wl) matrix. The loading can be done in parallel, to all the processors. the

x

Address

CONTROL UNIT

COUNTER

z
ROW/ADDRESS

. COUNTER

Figure.. - Processing element for computation ofG

other input consists of the K(wj ) and the T(wl ) matrices. The sequence of

operations is shown in the flowchart and has been explained above. The eight
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multipliers perform the eight complex multiplications required to form the

innerproduct in parallel. The results are fed through a multiplexer to an adderI

which sums them up, and stores the result in the memory array which can be

retrieved for later processing. The new row for the next loop is loaded into the

data latch when the multiplications are being performed. Once the process goes 3
into the second frequency the adder also has to retrieve the data from the array

and add to the newly computed value. This operation is performed by first I
reading the data from the RAM, adding it and writing the result back into the

same memory location.

The control unit essentially consists of four counters which are used to I
keep track of various operations being performed. The first counter is the

element counter which upcounts to eight and is used to control the innerproduct

computation. It enables the latches, which load the data from the appropriate 3
mulltiplier in to the adder. Once the element counter counts eight, it is reset and a

pulse is sent to the row/address counter which is incremented. The row/address I
counter also counts to eight and keeps track of the row of the input matrix that is 3
being loaded. This counter also provides the address for the RAM to store and

retrieve the data. The third counter is a matrix counter which counts the matrix 3
multiplications. It is a simple inverter and specifies the first or second

multiplication. This is complemented every time the row/address counter is

reset. The output of the matrix control is used to load the appropriate matrix into

the processor. The last counter is the frequency counter which counts upto thirty

three frequency bins. The outputs from the last two counters are basically used to 3
retrieve the appropriate data from the buffers. Once the G values are computed

for all the frequency bins, the processor then averages the column to give the

I
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value of the column of G. The whole matrix is obtained from the columns from

the eight processors.

6.3.3 Computation of Gn

This DOA algorithm requires the knowledge of the noise spectra in the

signal which is finally expresssed in the form of the G. matrix. The Gn matrix

can be computed similar to the G matrix except that the signal vectors are

replaced by sampled signals which do not have any wavefronts from the objects

in them. i.e. they are representative of the medium only. This operation needs to

be performed only for updating the Gn matrix. As explained in the previous

section there is one operation which is performed on the Gn matrix which is not

performed on the G matrix, which is the Cholesky Decomposition. This

operation is required to put the two matrices into the standard form for further

processing. The Cholesky decomposition can be carried out effectively offline

from the main processing stream, and the result fed back online whenever the

need arises. The architecture for this operation is explained in Section 6.3.5.

6.3.4 Forward Substitution

As explained in the previous section the G matrix needs to be decomposed

into a standard form. This transformation is accomplished by performing two

forward substitution operations as explained in Section 6.2.3. The steps in the

forward substitution are more complex than the previous stages because the

operation involves a series of multiply and accumulate steps to calculate each

element. Hence to reduce the complexity of the PEs, a systolic architecture is

adopted for this stage. Figure 6.9 shows a completely parallel and pipelined

proposed architecture for this operation.
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The stage consists of an array of 8x8 processors each of which computes 3
one element in the matrix. A detailed figure of a typical processing

, . I
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- I
!I
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P I P93 PPES E6 PE8 - S

Figure 6.9 - Fully pipelined and parallel architecture for the Forward Substitution operationI

cell is shown in Figure 6.10. The Y input in this case is the particular column ofI

the lower triangular matrix L and the X input is the corresponding element fromI

the G matrix. As before the X input is unique to the PE while the Y input is I

I I I



broadcast to all the PEs in that column. All the outputs are transmitted

downwards for further processing. In the first cycle the first row elements are

Element X _b .mn

of G Ikn

I mkRow Multiply,,,v
of ' 1 and

L Y accumulate

_tmm' _ mn

Figure 6.10 -Typical PE for Forward subsititution

computed. The result is broadcast to all the processors directly beneath it. From

the second cycle onwards the processsors beneath the row of that particular

operation, will be active while those which have already calculated their

corresonding elements are inactive. The whole process of calculation of the result

takes eight cycles. After it is done, the next set of data is loaded to compute H for

the standardization.

6.3.5 Cholesky Decomposition

The flowchart for the Cholesky decomposition shows the various

sequence of steps which the processors have to perform. Figure 6.11 shows the

array which is used for Cholesky decomposition of the Gn matrix. The triangular

array is loaded into the processors with each element going to its corresponding
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processor. The processors along the diagonal are different from the processors

below it as they have different computations to perform. The computation I

XI VU

,- h I
I

P 2 1 P 42 P 3P 4

R 24 P31 
P32 

P 53P4P5

PSI P52 P53 P64 P65 P6

P1 P71 P73 P74 P75 P76 P77I

YI

Figure 6.11- Architecture for Cholesky Decomposition I
process takes eight cycles during each of which one column of the resultant L I
matrix is computed. I

I



The initial inputs are the individual elements of the matrix. Unlike the

previous processes, the input to the processors in th_ Cholesky decomposition

change during every cycle depending upon the number of the column that is

Figure 12 - Processing element for Cholesky Decomposition

being computed.The X input to a PE will be the above diagonal elements of the

corresponding column while the Y inputs are the corresponding elements from

the same row. The results are accumulated after every multiplication. For

example when the sixth row is being computed, there will be five multiplications

and additions before the final subtraction and division. The accumulated value is

subtracted from the original element value and then divided by the column's

diagonal element. The equation for computing the subdiagonal element is

i-I

aki - yaijaki

aki - aii

and the diagonal elements are computed by the equation
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akk= akk - ki3

Hence the PEs on the diagonal have a slightly different function to i
perform than the PEs below the diagonal and hence are a little different. 3

Once the 33 spectral matrices have been combined at a single frequency

then the computation can be carried out by the Householder/QR transformations

and tht iwer method. The developed architectures for these methods have been

explained in the previous chapters on the narrowband case. i
6.3.5 Conclusions

An architecture for the DOA estimation of broadband signals using the

bilinear transformation approach is described. Detailed designs of various 3
modules are in progress. The architecture will be optimized for real time

applications. I

i
i
I
i
i
I
I
I
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Chapter 7

COMPUTER SIMULATION

In order to demonstrate the performance of MUSIC algorithm for narrow-

band signals, an eight element linear equispaced array of omnidirectional sensors

was used with a spacing between the elements equal to 1/2 the propagation

wavelength X. For the case of broad-band signals, this array is used with eight

delayed outputs to perform the (BASS-ALE) estimation [29 ]. The sources were

assumed in far field, so source location reduced to azimuth angle 0, measured

relative to array broadside. Autoregressive moving average processes (ARMA) have

been chosen to represent the contrasting possibilities of spectra with narrow-band

and broad-band features. The data record length for all simulations was N (= 1000,

4800) data samples, and the SNR at each sensor is 10 db for all sources.

7.1 Data generation and simulations for narrow band signals

The incoming signals are assumed to be narrow band, that is, their spectrum

is zero outside an interval ( col , co2 ) where ((02 -(1 ) is small compared with a

center frequency coo. Thus, an incoming signal can be written as

s(t) = i(t) cos (a). t )- q(t) sin(oo t) (7.1)

where i(t) and q(t) are low-pass stationary processes, called the in-phase and
quadrature-phase components respectively. For such a signal, it is often more

convenient to use the complex representation in which s(t) = Re ( z(t)), where z(t) is

a complex process given by

z(t) = s(t) + j r(t) (7.2)
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In Equation (7. 2), r(t) is a stationary process given by

r(t) = q(t) cos (co. t )+i(t) sin(o ° t) (7.3)

Let w(t) be a complex process given by

w(t) =i(t) + j q(t) (7.4)
thusI

z(t) = w(t) exp(j o° t)

= s(t) +j r(t) (7.5) U
and

s(t)= Re ( z(t)) (7.6) I

Now for d incoming signals, the complex signal output of the kth sensor at time t,

can be written as

Yk (t) = z (t k(0)) + nk (t) exp(j (o. t) ; k=1,2, ..., m (7.7)

i= I I

where m is the number of sensors , T k (0) is the propagation delay between a
th th

reference point and the k sensor for the i waveform impinging on the array

from direction 0 i and nk (t) exp(j o t) is the added measurement noise.

By noting that the narrow-band assumption implies I

zi (t- tk(i) ) = zi (t) exp (-jcoo Tk()) (7.8) I

Yk (t) can be rewritten as 1
z (t) exp (- j w k( + nk (t) exp(j (ot)

i=l1

155 I



d= w, (t) exp (j co (t-Tk(0I))) + nk (t) exp(j co 0t) (7.9)

Let xk (t) be the signal obtained by multiplying every Yk (t) by exp (-j co ° t)

(demodulation of the incoming signals), such as

d

xk (t)= w (t) exp (- j co tk(0i)) + nk (t) (7.10)
i=l

For simulation purposes, samples of the complex process w(t), and n(t) are generated

as follows:

Independent Gaussian noise sequences e(n) are passed through a simple linear

system, as shown in Figure.1, with a transfer function given by

-2
K(1-z

Hi(z)= 2 -2 (7.11)
(1-pz)

where p= .99 j , and K is a constant chosen such that I HI(z) I =1. The output to the

input ratio can be written as
-2

S(z) A(l-z')
E(z) 2-2 (7.12)

(1-pz)

where E(z) and S(z) are the z-transform of the input e(n) and output s(n),

respectively. The z-transform S(z) of the unknown sequence s(n) satisfies the

algebraic equation
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S(z) =P z S(z) +A(E(z)-z E(z)) (7.13) I
The response s(n) can thus be determined by taking the inverse z-transform of S(z)

to get the recursion or difference equation 3
2!s(n)= p s(n-2) +A e(n) - A e (n-2) (7.14)

I
The time series s(n) at the output of the linear system (narrow-band filter) are

multiplied respectively by cos(nitT/2) and sin(nnT/2), where T is the sampling

frequency, and then passed through a low pass filter with transfer function

B(O+z )
H 2(z)= (1- .99z 1 ) (7.15) i

I
I

2cos(nnT/2)

e~nn) H2(z) I V>  I
h2(z) 

I
sq(n)

-2sin(nTtT/2) I

I
Figure 1. In-phase and quadrature components i
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The in-phase and quadrature components of the incoming signals are obtained, as

shown in Figure 1, as

I(z) B(l+z- 1 )
S (z) (1- .- ) (7.16)

and

Q(z) B(O+z 1 )1 Sq(z) (1- .99z " ) (7.17)

Now by taking the inverse z-transform of the above equations, the recursion

equations for I(n) and q(n) are given respectively by

I(n) = .991(n-1) +B si(n) +B si(n-1) (7.18)

q(n) = .991(n-1) +B sq(n) +B sq( n-I) (7.19)

IThe complex time series s(n) = I(n)+jq(n) are multiplied respectively by th

exp (- j w tk(0)) to simulate the arriving signal from direction 0. at the k sensor,

and a sample covariance matrix R XX can be constructed as described in Chapter 1.
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For the particular case of a linear array , where the spacing between the elements is

A=X/2, exp (- j ,) t(O 1 )) reduces to exp(-jit(k-1) sin (el) ). For simulation purposes, I
also an infinite sample size covariance matrix was generated by assuming that all

sources were mutually uncorrelated and that

E(wi(n)) = 0 (7.20)

V~wl~n)= a,(7.21)

E(nk(n)) = 0 (7.22)I

V(nk(n))=c C;2k=1, , m (7.23)I

Under these conditions, it can be shown that the infinite covariance matrix can be

obtained as3

r(0) r(1) r(2) ... r(m-1)I
r*(l) r(0) r(l) ... r(m-2)
r*(2) r*(l) r(0) ... r(m-3)

r*(m-l) r*(m-2) r*(m-3) ... r(0)I

whered

r 2)= ~ exp(-jit(k-1) sin (6.) k= 1,2 , ...,m (7.24)
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and

r(0) = d T - 2  (7.25)

Once the data covariance matrix has been derived, the eigendecomposition was

performed using Householder's transformations and QR algorithm, and the spatial

spectra as function of 8 was plotted. It can be noted that for the case of the ideal

covariance matrix, the accuracy on the estimation of the arrival angles depends

mainly upon the number of iterations performed by the QR algorithm as shown in

I Figure 2 (a)-(c). By increasing the number of iterations, we have the ability to resolve

closely spaced sources. keeping the number of iterations small may yield to inferior

I results. This is due to the fact that the eigenvalues and eigenvectors may indicate

some bias from the theoretical ones. Consequently, the vectors spanning the signal

subspace are not orthogonal to the vectors spanning the noise subspace. However,

I by using Gram-Schmidt orthogonalization [42] to make these subspaces orthogonal,

good results may be achieved with small number of iterations as shown in Figure 3

(a)-(c). For the case of finite data covariance matrix, the MUSIC algorithm may

indicate some bias in locating the sources even for very large number of iterations,

and for several trials. That is, the MUSIC spectrum did not exhibit two peaks at 400

and 45 as shown in Figure 4 (a) and 4 (b) . Moreover, the results indicate that

sometimes , the MUSIC algorithm failed completely in locating any source in the

interval [35 , 50) ]. However, using Gram-Schmidt orthogonalization as for the

I case of infinite covariance matrix, it was possible to discriminate the targets with

Ismall number of iterations as shown in Figure 5 (a) and 5 (b).
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7. 2. Simulation results for broad-band signals

The emitter signals are generated by passing two independent Gaussian I
white noise processes through a second order filter having poles z, and z,

(z, = a exp ( j 0)), and two zeros at z= 0 such that I
2KzI

H(z) = , (7.26)
(z- z)(z-z )I

K is determined so that I H(z) I =1, or I

K= (I-a) 1 +a -2acos 0 (7.27)

This band-pass filter is chosen such that its center frequency is equal to

fo= fs/10 and thus 0 is given by 3
0 =(2fo/f s )*180= 36 0 (7.28) I

for a= .85 we have 3
2S(z) z2

H(z) - E(z) - .164 (z2- 1.37 z + .723) (7.29)

The response s(n) can be determined, as in the narrow-band case, by taking the 1

inverse z-transform of S(z) to get the recursion or difference equation 3
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s(n)=1.37 s(n-1) -.723 s(n-2) +.164 e(n) (7.30)

For simulation results, two sources, as shown in Figure 6 , are considered arriving at

angle 01 and 02 such that

T k(01) = (k-I) T (7.31)

and

T k(02) = 2(k-1) T (7.32)

where T is the sampling period. The values of 01 and 02 can be determined by

letting k=2 in Equations (7.30) and (7.31), or

tI (01) = A sinO1 /c (7.33)

T1(02) = A sin0 2 /c (7.34)

now, from the fact that A = X/2, and the sensor spacing was 1/2 the propagation

wavelength for the processing frequency fo, 01 and 02 can be shown to be equal to

11.53 and 23.57 . These samples are used to generate the covariance matrix, as

described in [29], in order to estimate the spatial spectrum using (BASS-ALE)

estimation.

Also an infinite data covariance matrix can be generated by considering two sources

having a spectrum and an autocorrelation function, given respectively by
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S = 01Pwo ( (o - CO) (7.35) I
and

RS - ( sinc(o o t ) exp( jOct (7.36)

For this case, it can be shown that the infinite covariance matrix can be obtained as

r(O) r(1) r(2) ... r(nm-1)
r*(1) r(O) r(1) ... r(nm-2) I
r*(2) r*(1) r(O) ... r(nm-3)

R -- U

r*(nm-1) r*(nm-2) r*(nm-3) ... r(O) 1

where m is the number of sensors, and n is the number of delays, and where 3

r(k) = "( sinc(a) exp( jna/5) + sinc( 5) exp(jrb/5)) (7.37)

with i

a = i+j-2,

b = i+2j-3 , and

k= 2 (i-I) +j ; j=l,m, i=l,n 3
and

r(O) = 2 a+ 2 (7.38)

An estimate of the DOA's for this case is shown in Figure. 7. U

I
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Chapter 8

CONCLUSIONS

The work performed for the development of parallel architecture for

sensor array algorithms for the last one year has been described in Section 8.1

and future work is given in Section 8.2. Further results, recommendations,

suggestions and conclusions will be presented in the final report.

8.1: WORK PERFORMED

1. A literature survey has been performed and investigated for

various algorithms available for narrow band and wide band cases.

2. In the area of narrow band, MUSIC and ESPRIT algorithms were

selected and further studied. These algorithm were converted into

computationaly efficient algorithms and subsequently parallelized. Three

different architectures namely Systolic architecture, Cordic processors and

SIMD are under consideration.

3. These algorithms required eigenvalue decomposition. Householder

transformation was used to convert covariance matrix into tridiagonal

matrix. The QR method was used to finally obtain eigenvalues and

eigenvectors. The detailed parallel architecture has been developed for

parallelized Householder transformations and QR method.

4. An architecture for a generalized processing element suitable for

I sensor array processing elements has been developed. Its custom instruction

set has been developed.

5. Single instruction multiple data (SIMD) type of architecture lend

I[ themselves for the implementation of narrow band DOA estimation. The
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computation of covariance matrix, Householders transformation and QR

method con be easily computed using SIMD machine. The work on SIMD I
machine is under progress.

6. In the case of wideband DOA estimations, various algorithms

available in the literature were studied. It was found that wideband DOA 3
estimation is more computationaly intensive than narrow band case. An

algorithm proposed by Shaw has been selected for further study. This I
algorithm again has been modified and substituted with computationally

efficient operations. An architecture for the computation of this algorithm is

developed. 3
7. DOA estimation for wide band sources using "Broad-Band Signal-

Subspace Spatial Spectral (BASS-ALE) estimation algorithm has been studied, I
simplified, parallelized and its architecture has also been developed.

8. To verify the validity of all these work, following simulation

programs are written. 3
(a; Data generation of narrowband and wideband sources for eight

sensor arrays has been computed. 3
(b) Simulation of MUSIC algorithm and DOA estimation is

completed.

(c) Simulation of BASS-ALE algorithm for wideband sources is 3
almost complete.

(d) Assembly language simulation using DSP56000 DSP processor 3
for MUSIC e Yorithm is in progress.

(e) Simulation of DOA estimation using bilinear transformation

approach is almost complete. 3

I
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8.2 FUTURE WORKI

1. The pipelined architecture of MUSIC should be developed using

Application Specific Integrated Circuit (ASIC) chips. This will include

I processing modules, latches, buffers and memory elements.

2. A simulation can be performed at architecture level using VHDL

software to check computational complexity of the entire parallel

architecture. Logical level and circuit level design can be done using

IViewlogic's computer aided design (CAD) tool Workview 4.0. This circuit

Ilevel design can be converted into Very Large Scale Integration (VLSI) level

design by various design tools available.

1 3. As the entire architecture cannot be accommodated on a single chip,

multichip modules can be used. This will involve study of inter-chip

communication, I/O bus architecture for each chip, bus arbitrator etc.

4. A single Generalized Processor (GP) has been developed which

minimizes cost and design time can be converted into a RISC processor. This

RISC processor will simplify the design of control unit, enhance the speed of

the operation by improved pipelining.

5. The entire MUSIC algorithm can be executed on several RISC

processors in a miltiprocessor environment depend.ng on the speed

requirement.

6. This generalized RISC processor can not only be used for MUSIC

algorithm, but also can be used for ESPRIT and other sensor array processing

algorithms and digital signal processing algorithms.

7. The MUSIC/ESPRIT algorithm will be modified in an attempt to

obtain more accurate DOA's.
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8. A detailed architecture for ESPRIT algorithm is being developed and

can also be extended to wideband case. I
9. A study will be performed to estimate real time requirements for the

computations of DOA. Based on this study, real time architecture for the

computation of MUSIC and ESPRIT will be proposed. 3
10. Parallel architecture for BASS-ALE algorithm for wide band sources

has been described and requires completion of the following: U
(a) Complete the design of signal-subspace dimension D estimate

unit.

(b) The design of power method (wideband case) unit.

(c) VLSI design or design using commercially available DSPs or

combination of the two approaches need to be done. I
(d) Low level simulation of this method need to be performed as

high level simulation using FORTRAN is already completed.

11. Parallel architecture for bilinear transformation algorithm for wide 3
band sources, has also been designed and needs the design of the following:

(a) The design will be optimized for maximum parallelism at every 3
level. This will enable the architecture to be sufficient for higher

sampling rates.

(b) The various modules will be designed in detail, with emphasis 3
on timing requirements at each stage and the routir . of data.

(c) The modules will be implemented using commercially available 3
DSP simulation software or ASIC. The architecture will again be

simulated functionally using either DSP software or VHDL software.

(d) As customized processing elements for this class of algorithm 3
has been designed, the next step will be its VLSI implementation and

development of its assembler or other software. 3
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12. The two algorithms for the DOA estimation for wideband sources

namely BASS-ALE and bilinear transformation will be compared based on

hardware complexity, computation time requirements an accuracy of results.

IOne of the algorithm for the wideband case will be selected and will be

I designed completely.

I
I
I
i
I

I
I
I
I
I
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c This program implements the MUSIC algorithm for the direction *
c of arrival (DOA's) estimation for narrow band signals. Both *'
c incoherent and partially coherent signals are considered. *

c The data covariance matrix is generated by considering the *

c time series at the output of a narrow-band filter whose input *
c is a white noise of power sigmal. *

c The array chosen has a maximum of eight elements and the
c spacing between two elements has been chosen to be equal to
c Lamda/2. *

c *
c Also an infinite sample size data covariance was genrated
c to estimate the DOA's of incoherent sources.
c

c c =(cr,ci) -Complex data covariance matrix
c nc Number of sensors
c ns Number of sources
c z =(zr,zi) _Complex array of dimension ns representing

the sources
c th -Array of dimension ns representing the

angles of arrival of the sources
a x =(xr,xi) _Complex array of dimension nc representing

the sensors outputs
a n =(nr,ni) _Complex array of dimension nc representing

the added measurement noise at the sensors
c r =(rr,ri) -Complex matrix representing the data covariance

matrix after Householder's transformations'
c t =(tr,ti) -Diagonal matrix resulting from the QR

transformations
a u =(ur,ui) _Complex matrix whose rows are the eigenvectors

of the original data covariance matrix
c pm Array representing the spatial spectrum
c sigl -Signal power
c Sig2 -Noise power

character outl*l0,out2*10,out3*10,out4*10
real cr(8,8), ci(8,8), zr(8), zi(8)
real xr(8),xi(8),nr(8), ni(8),th(8)
real yr (8,8), yi (8, 8), tr (8,8), ti (8,8)
real rr (8,8), ri (8,8), ur (8,8), ui (8,8), pm(361)
integer option
pi= acos(-l.)
print *,'Input number of sensors'
read *, nc
print *,'Input number of signals less than number of sensors'
read *, ns
print*, 'Input the angle of arrival for each signal (in degrees)'
do 1 k=1,ns
print*, 'th(',k,')=?'
read *, th(k)
th(k)= pi*sin(th(k)* pi/180.)/2.

1 continue
print *,' Input the signal power'
read *, sigI
print *,' Input the noise power'
read *, sig2



print *,'Input 0 for infinite sample size, 1 otherwise'
read * ,option
if (option.eq.0) goto 40

print *, 'Input number of samples'

print *,'0 for partially coherent, 1 otherwise'
read *,option
if (option.eq.0) thenI
Out 1="CO-cov"
out2="Co-hh"
out 3=-Co-qr"
out 4="Co-pow"I
else
outl=" Ic-cov"

out2="Ic-hh"

out4=" Ic-pow"
endif

nn=n/2I

sig2-1.
seed-rnd (0.0)
stdevl-sqrt (sigi)I
stdev2=sqrt (sig2)
do 2 jl,nc

do 2 l=j,ncI

ci(j,l)=0.
2 continue

do j-l,ncI
do k-2,3
sx (j,k) =0.
sy(j, k)=0.
nx(j,k)=0.I
ny(j,k)=0.
enddo

sc (j, 2) =0.I
si(j,2)=0.
sq(j, 2)=0.

nc (j, 2) =0.I
na (j, 2) =0.
ni (j,2)=0.

nq(j, 2) =0.
enddoI
do 3 i-l,n
call gauss (stdevl,x, seed)
do j-l,nsI
if(option.eq.0.and.i.le.nn) goto 30
call gauss (stdevl,x, seed)

30 sy(j,l)--.9839*sy(j,3)+(l./100.5)*(x-sx(j,3)l

sc(j. l)-sy(j,1)*cos(float(i)*.5 *pi)I
ss(j, 1)-sy(j, l)*sin(float (i) *5 *pi)
si(j,l)-.99*si(j,2)+.5*(sc(j,2)+sc(j,1))
sq(j,l)=.99*sq(j,2)+.5*(ss(j,2)+ss(j,1))
zr (j) -si (j,l1)I
zi (j) -sq (j, 1)
sy (j, 3) -sy (j, 2)

sx(j, 3)-sx(j,2)I



sy (j, 2) =sy (j, 1)
sx 0, 2)=x
ss(j,2)=ss(j,l)
sc (j, 2 ) =sc (j, 1)
si (j, 2)-si (j, 1)
sq Cj .2) =sq C 1)
enddo

do j=l,nc
call gauss (stdev2, x, seed)
ny(j,l)4=-.9839*ny(j,3)+(l./100.5)*(x-nx(j,3))
nc(j,1)=ny(j, 1)*cos(float(i)*.5 *pi)
ns(j,1)=ny(j,l)*sin(float(i)*.5 *pi)
ni(j,l)-.9 9*ni(j,2)+.5*(nc(j,2)+nc(j 1))
nq(j,1)=.99*nq(j,2)+.5*(ns(j,2)+flsA.))
nor (j) =ni (j, 1)
noi (j)=nq(j, 1)
ny(j,3)=ny(j,2)
nx(j, 3)-nx(j, 3)
ny (jf2) =y (j, 1)
nx(j,2)-x
ns(j,2)=ns(j,1)
nc (j, 2) =nc (jf 1)
ni (j, 2) =ni (j, 1)
nq (j, 2) =nq (j, 1)
enddo

do 4 j=l,ric
xr(j)=0.
xi (j)=0.
do 7 k=1,ns
xr(j)=xr(j)+zr(k)*cos(float(j-l)*th(k))
xr(j)=xr(j)+zi~k)*sin(float(j-l)*th(k))

7 continue
xr (j) =xr(j) +nor(j)
xi (j) =xi (j) +noi (j)

4 continue

c
c Generate the data covariance matrix for finite
c sample size
c

do e j=1,nc
do 8 l-j,nc

8 continue
3 continue

do 9 j=1,nc
do 9 l=j,nc
cr(j,l)=cr(j,l)/float(n)
cr(l, j)=cr(j,l)
ci (j,l)-ci(j,l) /float~n)
ci (l, j) -- ci (j,l1)

9 continue
goto 50

c



c Generate the data covariance matrix for infinite
c sample size

40 do 10 j-1,nc

do 10 l-j,nc
cr(j, l)0O.
a-float (j-l)
do 11 k-1,nsU
ci-cos (a*th (k))
sl=sin(a*th(k))
cr(j,l)- cr(j, j)+cl*sigl
ci i, 1)- ci (j,1) +sl*siglI

11 continue
cr (1, j) -cr (j,l1)
ci (l, j) -- ci (j,l1)U

do 12 i=1,nc
cr(i, i) -cr i, i)+sig2

12 continueI
50 print ~,'Data covariance matrix'

do i1l,nc
print *,(cr(i,j),j-l,nc)

enddoU
print ,

do i-1,nc

print *,(ci(i,j),j-l,nc)I

enddo
call hhc (cr,ci,rr,ri,ur,ui,nc)
print *, HH matrix'
do i-1,ncI
print *,(rr(i,j),j1l,nc)

enddo
print *

do i-1,ncI
print *,(ri(i,j),j-l,nc)

enddo3

call qrc (rr,ri,tr,ti,ur,ui,nc)
print ~,'OR matrix'
do i1l,nc
print I (tr(i,j),j1l,nc)I
enddo
print *

do i1l,nc

print *,(ti(i,j),j-1,nc)
enddo

call power (ur, ui, pm, ns, nc)3
do i-1,90
jj-i-1
print *,jj,pm(i)

enddoI
st op
end

C

c subroutine name :Gauss

cI



c This subroutine generate two gaussian random numk.Lrs
c
c Input parameters
c stdev _standart deviation of white gaussian noise
c seed _arbitrary integer which will serve as seed
c for generating a gausian number
c
c Output parameters
c a,b _two gaussian numbers denoting the in-phase
c and quadrature components of the white noise
c

subroutine gauss(sdev, a,seed)
real sdev,a
s-0.
do 1 ii=l,12
seed=rnd (seed)
s-s+seed

1 continue
a- (s-6.) *sdev

return
end

c
c subroutine name: hhc
c
c This subroutine reduces a full dense hermetian matrix
c to tridiagonal one using Housholder,s tranformations
c
c Input parameters
c c=(cr,ci) -data covariance matrix
c n -matrix order
c
c Output parameters
c r-(rr,ri) _tridiagonal matix
c u-(ur,ui) _product of the (n-2) Householder's'
c transformations, also partial result
c of the eigenvectors.
c

subroutine hhc (cr,ci,rrri,ur,ui,n)
real rr(8,8) , ri(8,8) ,ur(8,8) ,ui(8,8) ,wr(7) ,wi(7)
real cr(8,8),ci(8,8)

c
c Initialisation for the eigenvectors
c

do 1 i-l,n
do 2 j-l,n
ur(i, j)-0.0
ui(i, j)-0.0

2 continue
1 continue

do 3 i-l,n
ur(i, i)1-
ui (i, i) -0

3 continue
c
c Compute the Householder's transformations'
c

do 4 i=l,n-2
rl-0.0



do 5 j-i+l, n

5 continue
d-3qrt (cr(i+1,j) *Cr (i+l, i) +ci(i+1, j) *ci(i+l, i))I
r1.-sqrt (ri) /d
wr(i)-cr(i+1, i)+r1*cr(i+1, i)
wi (i) -ci (i+1, i) +r1*ci(i+l, i)
cr(i+l, i)--rl*cr(i+l,i)I
ci (i+1, i)-r1~ci (i+1,i)
cr (i, i+1) -Cr(i+l, i)

do 6 j-i+l,n-.
wr(j)-cr(j+l, i)
wi(j)=ci(j+1,i)

6 continue C-OI
do 18 j-i,n-1
ca.c+wr(j)*wr(j)+wi(j)*wi(j)

18 continueI
c-c /2

C
c Compute the update covariance data matrix for every
c transformation

do 7 j-i+2,n
cr(i, j)-0.0
cr(j,i)-0.Q
ci~i, j)-0.0
ci(j,i)-0.O

7 continueI
do 8 j-i+1,n
dl-0 .0
d2-0.0

do 9 k-i+1,n
dl-dl+wr(k-l)*cr(k, j)+wi(k-l)*ci(k, j)
d2-d2+wr(k-l1)*ci(k,j)-wi(k-1)*cr(k,j)

9 continueI

d2-d2/c
do 10 k-i+1,n

ci (k, j)-ci(k, j) -(rr r(k-i) *d2+wi (k-i) *d1)
10 continue
8 continue

do 11 j-i+1,n
di-0 .0
d2-0. 0

do 12 k-i+l,n

d2id2+wr(k-1)*ci(j,k)+wi(k-l)*cr(j,k)
12 continue

dl-dl/cI
d2-d2 /c
do 13 k-i+1,n

13 continue
11 continue

cI



c Compute the product of the Housholder's transformations'
c which will serve as a partial result for obtaining the
c eigenvectors of the original matrix
c

do 14 j-i,n
dl=0.0
d2-0.0
do 15 k-i+l,n
dl=dl+wr(k-i)*ur(k, j)+wi(k-i)*ui(k, j)
d2=d2+wr (k-l) *ui (k, j) -wi (k-l) *ur (k, j)

15 continue
dl=dl/c
d2-d2/c
do 16 k-i+l,n
ur (k, j)-ur (k, j) - (WE(k-l) *dl-wi (k-l) *d2)
ui (k, j) -ui (k, j) -(wr (k-l) *d2+wi (k-l) *dl)

16 continue
14 continue
4 continue

do 17 i-l,n
do 17 j-l,n
rr(i, j)-cr(i, j)
ri(i, j)-ci(i, j)

17 continue
return
end

C
c subroutine name: qrc
c
c This subroutine reduces a tridiagonal matrix to a
c diagoanl one using the QR algorithm
c
c Input parameters
c y-(yryi) _tridiagonal matrix
c u=(ur,ui) -product of the (n-2) Householder's'
c transformations, also partial result
c of the eigenvectors.
c n -matrix order
c
c
c Output parameters
c t-(tr,ti) -diagonal matrix whose entries are the
c eigenvalues of the original matrix
c
c u-(ur,ui) -matrix whose rows are the eigenvalues
c of the original matrix
c

subroutine qrc(rr,ri,tr,ti,ur,ui,n)
real tr(8,8),ti(8,8),qr(8,8), qi(8,8)
real rr(8, 8), ri (8,8) ,ur(8, 8) ,ui(8,8)
real fr(8,8), fi(8,8)
do 1 i-l,n
do 1 j-l,n
tr(i, j)-rr (i, j)



1continue

C ntaiethe number of iterations needed to performU

c the eigendecomposition of the tridiagonal matrix
c

it er-O
15 iter-iter+l

do 2 i=1,n
do 2 j=1,n
qr(i, j)-O
qi(i, j)=OI

2 continue
do 3 i=l1n

qr(i, i)-1

3 continue

c Compute the plane rotations of every iteration3
c

y-tr (1,1)
do 4 i-l,n-l
x-tr (i+1, i) *tr (i+1, i) +tiCi+l, i) *ti (i+l, i)I
if (x.eq.0.)
y-tr (i+1, i+1)
else

prll11/

pill-0.I

pr2l--prl2
pi2l'mpi12
pr22-prl 1

pi22-0.
CI
c Compute the eigenvectors
C

do 7 j-l,n crlprl~u~ij)-il~uii~)+pl2ur~~lj)-il*uii ~~I
cil-prll*ui(i,j)+pill*ur(i,j)+prl2*ui(i+l,j)+pil2*ur(i+l,j)
cr2-pr2l*ur(i,j)-pi2l*ui(i,j)+pr22*ur(i+l,j)-pi22*ui(i+l,j)
ci2-pr2l*ui(i,j)+pi21*ur(i,j)+pr22*ui(i+l,j)+pi22*ur(i+l,j)
ur (i, j) -cr1
ui(i, j)-cil
ur (i+l, j) -cr2
ui (i+l, j) -ci2

7 continue

c Compute the orthogonal matrix Q for every transformation3

do 8 j=1,n

cil-prll'qi(i,j)+pill*qr(i,j)+prl2*qi(i+1,j)+pil2*q(i+l,j)

cr2-.pr2l*qr Ci, j) pi2l*qi Ci, j)+pr22*qr(i+l, j) -pi22*qi (i+1, j)
ci2-pr21*qi(i,j)+pi21*qr(i,j)+pr22*qi(i+l,j)+pi22*qr(i+l,j)
qr(i, j)-crl

qi(i, j)-cil



qr (i+1, j) =cr2
qi (i+1, j) ci2

8 continue

endif
4 continue
c

c Compute the update trdiagonal matrix
C

do 9 i=1,n
do 9 j=l,n
rr(i, j)0O
ri (i, j)0

9 continue
do 10 i-1,n
do 10 j-l,n
do 10 k-l,n

ri (i,i) -ri (i, i) 4qi (i,k) *tr (k, j) +qr (i, k) *ti (k, j)
10 continue

do 11 i=1..n
do 11 j-1.n
tr(i, j)0O
ti(i, j)=0

11 continue
do 12 i=1,n
do 12 j-1,n
do 12 k=1,n
tr(i,j)-tr(i,j)+rr(i,k)*qr(j,k)+ri(i,k)*qi(j,k)

12 continue
c
c Test for convergence.
c Perform the iterations until sum of the square of the
c subdiagonal elements are less than some specified
c value (tolerance)
c

s-0.
do 13 i=1,n-1
j~i+1
s-s+tr(j,i)*tr(j,i)+ti(j,i)*ti(j,i)

13 continue
print *,iter
if (s.gt.0.0001) goto 15
return
end

c
c subroutine name: power
c
c This subroutine calculates the spatial spectrum using
c MUSIC algorithm for narrow-band signals
c
c Input paraxnetres
c u-(ur,ui) -matrix whose rows are the eigenvectors
c of the original data covariance matrix



c n _matrix order
c d -dimension of the signal subspace

C Output parameter3
c pm -Array representing the spatial spectrum
C

subroutine power(ur, ui,pm,d,n)
integer d
real ur(8,8),ui(8,8),pn(361)

piao(-1.)1
do 1 i-1,90

ph= pi*sin (theta) /2.I

do 2 j-d+l,n
sr=0.

si=0.
do 3 k=l,n
sr-sr+ur (j,k)*cos((float (k) -1.) *ph)
sr-sr+:,-i(j,k)*sin((float(k)-1.)*Ph)
si-si+ur (j,k) *sin ((float (k) -1.) *ph)I
si-si-ui (>4k) *cos ((float (k) -1.) *ph)

3 continue

pm(i) -pm(i) +sr*sr+si*siI

jj-i-l
pmli)=1. /pm(i)
print *,jj, prn(i)I

return
end3



c This program implements the MUSIC algorithm for the direction *
c of arrival (DOA's) estimation for broad-band signals. Both
c incoherent and partially coherent signals are considered. *
c The data covariance matrix is generated by considering *
c two broad-band emitters supposed to be present at 11.53 *
C and 23.57 with identical spectra.The emitter signals are the *
c time series at the output of a band pass filter (BPF) whose *
c input is a white noise of power sigmal. *
c The BPF has a center frequency f0=2khz. The class of input *
c signals expected is bandlimited to below 10khz. The sampling *
c frequency is selected as 20khz. *
c The array chosen has a maximum of eight elements and the *
c spacing between two elements has been chosen to be equal to *
c c/fO, where c is the propagation velocity. *
c *

********** ****** ********* ******************************* ****** ********

c C -(cr,ci) .Complex data covariance matrix
c nc Number of sensors
c ns -Number of sources (chosen to be equal to two)
c z =(zr,zi) -Complex array representing the signals at

the sensors and different delays.
c xl =(xlr,xli)-Complex array representing the samples of

source number 1.
c x2 =(x2r,x2i)_Complex array representing the samples of

source number 2.
c n =(nr,ni) -Complex matrix representing the added

measurement noise at the sensors
c r =(rr,ri) _Complex matrix representing the data covariance

matrix after Householder's transformations'
c t =(tr,ti) -Diagonal matrix resulting from the QR

transformations
c u =(ur,ui) -Complex matrix whose rows are the eigenvectors

of the original data covariance matrix
c pm -Array representing the spatial spectrum
c sigl -Signal power
c Sig2 -Noise power

character outl*10,out2*10,out3*10,out4*10
real cr(64,64), ci(64,64), zr(64),zi(64)
real xlr(15),xli(15),x2r(15),x2i(15),wr(64),wi(64)
real yr(64,64), yi(64,64), tr(64,64),ti(64,64)
real rr(64,64),ri(64,64),ur(64,64),ui(64,64),pm(360)
real nr(3,8),ni (3, 8)
integer option
tpi-2*acos(-l.)
print *, 'input the number of samples multiple of 8'
read *,n
n-n/8
print *,'0 for partially coherent, 1 otherwise'
read *,option
if (option.eq.0) then
outl-"CCVdat"
out2-"CHHdat"
out3-"CQRdat"
out4-"CPOdat"
else
outl-"ICVdat"



out2-" IHHdat"I
out3-'IQRdat"
out4-'IPOdat"
endi f

stdev2=sqrt (sig2)
do 1 j-1,64
do 1 1-j,64
cr(j, l)-O.U
ci (j,l)0O.

l~continue

c Generate sources arriving from angles 11.53 and 23.57
c respectively
c

call gauss (stdevl,xl,x2, seed)I
xl r(1)-. 164 *xl
xli (1)-. 164*x2
if (option.eq.O) goto 12
call gauss (stdevl,x1,x2, seed)U

12 x2r(1)=.164*xl
x2i (1) .164*x2
call gauss (stdevl,x1,x2, seed)I
xlr (2)-. 164*xl+1.37*xlr(l)
xli (2)-. 164*x2+1.37*xli (1)
if (option.eq.O) goto 13
call gauss (stdevl,xl,x2, seed)I

13 x2r(2)=.164*xl+1.37*x2r(1)
x2i (2)-. 164*x2+1 .37*x2i (1)
do 2 i-3,15

call gauss (stdevl,xl,x2, seed)

if (option.eq.O) goto 14I
call gauss (stdevl,xl,x2, seed)

14 x2r(i)m.164*x1+1.37*x2r(i-1)-.723*x2r(i-2)

2 continueI
c
c Generate added noise of same bandwidth as sources

do j-1,8I
call gaus(stdev2,xl,x2, seed)
nr(1, j)=.164*xl
ni (1, j) - -164 *xl

enddo

do j-1,8

call gauss (stdev2,xl, x2, seed)I
nr(2,j)=.164*xl + 1.37*nr(1,J)
ni(2,j)-.164*xl + 1.37*nr(l,j)
enddo

do j-1,8
call gauss (stdev2,xl,x2, seed)

nr(3,)).164*xl + 1.37*nr(2,j) -. 723*nr(1,j)



ni(3,j)=.164*xl + 1.37*nr(2,j) -. 723*ni(l,j)
enddo

do 3 j-1,8
j1-16-j
j2=17-2*j
zr(j)=xlr(jl)+x2r(j2)+nr(3,j)

3 continue
do 4 i-1,n
do 5 k-7,1,-l
do 6 j-1,8
jl=j4.k*B
zr(jl)=zr(j)
zi (ji)=zi (j)

6 continue
do 7 j=1,14
xlr(j)=xlr(j+1)
xli(j)=xli(j+1)
x2r (j) =x2r (j+l)
x2i (j)-x2i(j+1)

7 continue
call gauss (stdevl,xl,x2, seed)
xlr(15)-.164*x1+1.37*xlr(14 )-.723*xlr(l3)
xli (15)=.164*x2+1.37*xli(14 )-.723*xli(13)
if (option.eq.O) goto 15
call gauss (stdevl,xl,x2,seed)

15 x2r(15)=.164*xl14..37*x2r(14 )-.723*x2r(13)
x2i(15)=.164*x2+1.37*x2i(14 )-.723*x2i(13)

do j-1,8
nr (1, j) nr (2, j)
ni(l, j)-ni (2, j)
nr(2, j)-nr(3, j)
ni(2, j)-ni(3, j)
call gauss (stdev2,xl,x2, seed)
nr(3,j)=.164*xl + 1.37*nr(2,j) - .723*nr(1j)
ni(3,j)=.164*xl + 1.37*nr(2,j) - .723*ni(l,j)
enddo

do 8 j-1,8
j1-16-j
j2=17-2*j
zr(j)-xlr(jl)+x2r(j2)+nr(3, j)
zi(j)-xli(jl)+x2i(j2)+ni(3, j)

8 continue
5 continue
c
c Generate the data covariance matrix (64,64)
c

do 9 j-1,64
do 9 1-J,64
cr(j,l)mcr(j,l)+zr(j)*zr(l)+zi(j)*zi(l)

9coinue-ijl)z~)z~)-il*rj
4 continue

do 10 j-1,64
do 10 1=j,64
cr(j,l)-cr(j,l) /float (n)



cr (1, j) -cr (j,l1)I
ci (j,l)-ci(j,l) /float(n)
ci~i, j)u-ci(j,I)

310 continueI
open (unit-20, file-outi, access-' sequential')
write(20,*) 'Data covariance matrix'
do i=1,64
write(20,100) (cr(i,j),j-i,64)I

write(20,*)
do i-1,64
write(20,l00) (ci(i,j),j=1,64)I
enddo
close (unit=20)

print *111 I
call hhc (cr,ci,rr,ri,ur,ui,n)
open (unit-2l, file-out2, access-' sequential')

write (21, *) 'Householder matrix'1
do i-1,64
write(21,100) (rr(i,j),j-1,64)
enddo
write(21,*)U
do i-1,64
write(21,100) (ri(i,j),j-1,64)
enddo

close (unit-21)
print *,'21

call qrc (rr,ri,tr,ti,ur,ui,n)
open (unit-22, file-out 3, access-' sequential')I

do i-1,64
write(22,100) (tr(i,j),j-1,64)

100 forinat(2x,8f8.2)I
enddo
write(22,*)
do i-1,64

write(22,100) (ti(i,j),j-1,64)
enddo
close (unit-22)

c print*, '3'I

c Estimate the signal subspace dimension

dmin-4096.I
min-6 4
b-tr (64, 64)
si-b
s2-ln (b)
do 11 i-63,1,-l
b-t r i, i)
si-si +bI

a-a* float(n)
a-a+float Ci) *(128. -float Ci))
if fa.gt.dmin) goto 11
dr .-a
mi n-i



11 continue

call power (ur,ui,pm,min,n)
open (unit-23, file-out4, access-' sequential')
write (23, *) 'Power method'
do i-1,90
uj-i-'
write(23,*) jj,pm(i)
enddo
close (unit=23)
stop
end

c

c This subroutine calculates the spatial spectrum
c using MUSIC algorithm for broad band signals using
c (BASS-ALE) estimation. See Equation (16) on Buckley
c paper " Broad-Band Signal-Subspace Spacial-Spectrum"
c (BASS-ALE) Estimation.""
c Nf which control the the sample density of the location
c vector is chosen to 5.
c
c
c Input parametres
c u-(ur,ui) -matrix whose rows are the eigenvectors
c of the original data covariance matrix
c n _matrix order
c d -dimension of the signal subspace
c
c Output parameter
c pm -Array representing the spatial spectrum
c

subroutine power (ur, ui, pm, d,n)
integer d
real ur(64,64),ui(64,64),pm(360), f(5)
real ar(64),ai(64),c(64),s(64)
pi-acos (-1.)
f (1)-3./40.
f (2) -7. /80
f(3)-l./l0.
f (4) -9. /80.
f (5) -1/8.
do 1 i-1,181
x- (float (i) -1) *pi/180.
theta-sin (x) /2.
pmWi-0.
do 2 J-1,5
xx-O.
do 3 k-1,8
dO 3 1-1,8
a-2*pi*f (j) *((float (1) -1) theta+ (float (k) -1))
m- (k-i) *8+1
c (in)-cos (a
s(in) -sin (a)

3 continue
do 4 ml-d+l,n
sr-O.
si-0.



I

do 5 m2-1,n I
sr-sr+ur(ml,m2) *c(m2) -ui (ml,m2) *s(m2)
si=si+ur(ml,m2) *s(m2)+ui (ml,m2) *c(m2)

5 continue
xx -xx+sr**2+si**2

4 continue
pm(i) -pm(i) +I/xx

2 continue
1 continue

return
end 3
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I
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